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Fractional Ignorance:
a scale-aware probabilistic metric

First, take an ensemble of forecasts and the observations
for a given field. Let's say composite reflectivity.
Threshold all fields (e.g., 30 dBZ) to create binary arrays. This can be done with Fast Fourier Transforms, and

accounts for tolerable errors in time and space.

Above: progressively pixellated supercells in the
latitude–longitude dimension. Similarly for
temporal dimension, if desired.

Right: difference in the
skill score FISS (defined right) FISS = (RES-REL)/UNC
between a 3-km and 1-km
ensemble forecast.
Negative values indicate
3-km domain is more
skillful than 1-km.
This is due to
poor reliability (REL)
in this case.

Above: set point to 1 if forecast exceeds
threshold, otherwise 0.

Fractional Ignorance was developed to bridge the gap
between probabilistic and scale-aware verification schemes.

Ignorance Score measures information deficit in a
probabilistic forecast, and can be decomposed into
reliability, resolution, and uncertainty.

For a given forecast time, choose spatial and temporal
windows (e.g., 9 square kilometres; 15 minutes) and
pixellate all ensemble members, and observations, at
progressively larger windows.

Apply the continuous/ranked form of Ignorance (CRIGN):
CRIGN = REL - RES + UNC (lower is better)

to the resulting fractional fields. Repeat over
multiple spatial and temporal windows for all times.
(See ref: Tödter and Ahrens, 2012, MWR)

Information, Predictability,
and Verification at the Thunderstorm Scale

Information Theory states that information, as a set of 1s and 0s (bits),
measures the surprise that information carries; or, the minimum number of
questions required to determine the state of a system. A large "surprise"
(i.e. deviation from expectation) denotes a larger amount of Information.

Fractional Ignorance gives full reward to probabilistic forecasts in a
way that Fractions Skill Score would not (i.e., an average of FSS over
all members loses information regarding the ensemble pdf). FI, like FSS,
is also scale-aware, reducing the double-penalty problem.
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Predictability:
traditional versus filtered

Consider a thunderstorm object identified in both
observed and forecasted reflectivity. The forecasted storm
has a locational (or timing) error equal to the diameter
(or lifespan) of the storm itself.
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This is the so-called
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Lorenzian predictability does not account for the
filtering performed by the forecaster or user. The
effective predictability horizon is in fact later in time.

We must reinterpret predictability on scales
where sharp discontinuities yield unfairly severe
penalties when performing evaluation, or where
spatial and temporal tolerances are larger
(e.g., issuing severe-weather polygons).

Right: schematic showing
"filtered" predictability
based on object-based or
scale-aware metrics doesn't
saturate as quickly as
defined by RMSE. The error
value is not relevant here
(different y-axes).
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Traditional chaos theory defines a predictability horizon
as reached when the forecast state is no more skillful
than a state chosen randomly from the climatology (i.e.,
error growth slows, reaching saturation). But the forecast
is useful: there *is* . So how do we fix this?

A long-lived supercell may be predictable from a
phenomenological paradigm (i.e., a supercell is
forecasted in most ensemble members but not in
the same place) but not in the traditional
sense (gridpoint-to-gridpoint evaluation).

For more, see Lawson (in review, JAS). Future work
by JRL/CKP/MF will address the interpretation of
predictability, and explore new evaluation metrics.


