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...
subroutine physics_init(ccpp_suite_name)
character(len=*), intent(in) :: ccpp_suite_name
integer :: ierr

call ccpp_init(ccpp_suite_name, cdata, ierr)
! Auto-generated list of calls to ccpp_field_add
call ccpp_field_add(t2, ‘air_temperature’, ierr)
...

end subroutine physics_init

subroutine physics_run(part)
integer, intent(in) :: part
integer :: ierr

call ccpp_run(cdata%suite%ipds(part), cdata, ierr)
if (ierr/=0) ... 

end subroutine physics_run
...

GMTB fosters and facilitates community engagement 

in atmospheric physics by

• providing a physics library and driver that allow 

distributed development in a model-agnostic setting

• supporting users with porting code to this library

• maintaining and supporting a comprehensive 

testing platform for the emerging NOAA Unified 

Forecast System (UFS)

• conducting testing and evaluation of innovations

• bringing together research and operational groups

About the Global Model Test Bed

CCPP Status

Common Community Physics Package

• The Common Community Physics Package (CCPP) 

is made up of two components (repositories), the 

CCPP physics library ccpp-physics and the CCPP 

physics driver ccpp-framework.

• ccpp-physics is a collection of vetted, dycore-
agnostic, physical parameterizations. There can be 

multiple of each type (PBL, cumulus etc.) to support 

various applications (high-res, seasonal etc.) and 

maturity level (operational, developmental).

• Vetted means that there is a governance process to 

determine what is included in CCPP.

• Dycore agnostic means that the parameterizations 

can be used with any dycore through the CCPP driver 

ccpp-framework with caps on both sides.

• Runtime selection of parameterizations/suites

• Configurable order/frequency of physics calls.

• User-specified grouping of schemes, subcycling.

• Under active developed at NOAA GSD and NCAR RAL

• V1 release March/April 2018 with GMTB SCM v2

• V2 release June/July 2018 with NOAA FV3-GFS v1

Adding a scheme to CCPP
• Write CCPP-compliant scheme (see below)

• Add scheme to list of schemes in CCPP 

prebuild config, handle optional arguments

• Add scheme to runtime suite definition file

• Done (really!)

Adding CCPP to host model
• Is nearly as easy as adding a new scheme

• Add config for CCPP prebuild (see below)

• Write host model cap to abstract away

CCPP calls from dycore (init, run, finalize)

• Add prebuild script & CCPP to build system

module myscheme

contains

subroutine myscheme_init ()
end subroutine myscheme_init

subroutine myscheme_finalize()
end subroutine myscheme_finalize

!> \section arg_table_myscheme_run Argument Table
!!| local_name | standard_name | long_name | units | rank | type      | kind  | intent | optional |
!!|------------|---------------|-------------|-------|------|-----------|-------|--------|----------|
!!| prs | air_pressure | air pressure| Pa    |    3 | real      | kind=8| inout | F        |
!!| rnd | random_number | random no   | none  |    3 | integer   | kind=4| in     | F 
!!| errmsg | error_message | CCPP errmsg | none  |    0 | character | len=* | out    | F        |
!!| errflg | error_flag | CCPP errflg | flag  |    0 | integer   |       | out    | F        |
!!

subroutine myscheme_run (prs, geo, errmsg, errflg)

implicit none
real(kind=8),     intent(inout) :: prs(:,:,:)
integer(kind=4),  intent(in)    :: rnd(:,:,:)
character(len=*), intent(out)   :: errmsg
integer,          intent(out)   :: errflg

!--- initialize intent(out) variables
errmsg = ''
errflg = 0

!--- add your code here

end subroutine myscheme_run

end module myscheme

compliant schemes

A CCPP-compliant physics scheme

module with scheme name

three entry points scheme_{init,run,finalize}

standard metadata table for subroutines

in use; parsed by CCPP prebuild script

all information through argument

list, no “use external_module”

modern Fortran, specify intent

and use “implicit none”

initialize all intent(out) variables

error handling by host model,

set errflg = 1 and assign errmsg

performance through flexibility: can use

threading inside and/or outside physics!

Tested environments

• Metadata tables on host side provide information 

on variables available from the host model.

• Required variables must be provided by host

model, incl. memory management (allocation).

• Python script ccpp_prebuild.py runs before 

build time, matches variables by standard_name.

• Consistency checks of units, rank, type, etc.

• Auto-generates caps for physics schemes.

• Auto-generates code inside host model cap to 

populate cdata structure (see below)

• Auto-generates makefiles for schemes, caps.

• cdata: lookup table standard_name à address in memory in C space.

• CCPP is implemented in the GMTB Single Column 

Model SCM and the Geophysical Fluid Dynamics 

Laboratory Finite Volume Cubed-

Sphere FV3-based NOAA GFS

• Hierarchical model development:

SCM allows for testing a physics

suite using external forcing w/o

dycore feedbacks

Host cap – runtime physics selection

• FV3: selected as dycore for Next 

Generation Global Prediction System 

(NGGPS) to replace GSM core of GFS

• Runs as a unified, fully-coupled 

system, in NOAA’s Environmental 

Modeling System infrastructure.

error handling by host model

add host model vars

to cdata structure

runtime suite definition file

Runtime suite definition file
<suite name="GFS_oper_2017" lib="gfsphys" ver="1">
<init>IPD_initialize</init>
...
<ipd part="2">
<subcycle loop="1">
...
<scheme>GFS_rrtmg_pre_run</scheme>
<scheme>rrtmg_sw_pre_run</scheme>
<scheme>rrtmg_sw_run</scheme>
<scheme>rrtmg_sw_post_run</scheme>
...

</subcycle>
</ipd>
...
<finalize>IPD_finalize</finalize>

</suite>

init

run

finalize

}scheme-specific interstitial

suite-specific interstitial
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