
Behind the scenes: CCPP technical implementation

Making forecasts better – community infrastructure for facilitating
improvement and testing of physical parameterizations

D. Heinzeller1,3,4, L. Bernardet1,3,4, G. Firl2,3, L. Carson2,3, C. Harrop1,3,4, P. Jimenez2,
G. Ketefian1,3,4, J. Schramm1,5, D. Stark2,3, L. Xue2,3, M. Zhang1,3,4, D. Gill2,3

1 NOAA, Earth System Research Laboratory, Global Systems Division; 2 National Center for Atmospheric Research;
3 Developmental Testbed Center; 4 University of Colorado Cooperative Institute for Research in Environmental Sciences;

5 Colorado State University Cooperative Institute for Research in the Atmosphere

...
subroutine physics_init(ccpp_suite_name)
character(len=*), intent(in) :: ccpp_suite_name
integer :: ierr

call ccpp_init(ccpp_suite_name, cdata, ierr)
! Auto-generated list of calls to ccpp_field_add
call ccpp_field_add(t2, ‘air_temperature’, ierr)
...

end subroutine physics_init

subroutine physics_run(part)
integer, intent(in) :: part
integer :: ierr

call ccpp_run(cdata%suite%ipds(part), cdata, ierr)
if (ierr/=0) ...

end subroutine physics_run
...

GMTB fosters and facilitates community engagement

in atmospheric physics by

• providing a physics library and driver that allow

distributed development in a model-agnostic setting

• supporting users with porting code to this library

• maintaining and supporting a comprehensive

testing platform for the emerging NOAA Unified

Forecast System (UFS)

• conducting testing and evaluation of innovations

• bringing together research and operational groups

About the Global Model Test Bed

CCPP Status

Common Community Physics Package

• The Common Community Physics Package (CCPP)

is made up of two components (repositories), the

CCPP physics library ccpp-physics and the CCPP

physics driver ccpp-framework.

• ccpp-physics is a collection of vetted, dycore-
agnostic, physical parameterizations. There can be

multiple of each type (PBL, cumulus etc.) to support

various applications (high-res, seasonal etc.) and

maturity level (operational, developmental).

• Vetted means that there is a governance process to

determine what is included in CCPP.

• Dycore agnostic means that the parameterizations

can be used with any dycore through the CCPP driver

ccpp-framework with caps on both sides.

• Runtime selection of parameterizations/suites

• Configurable order/frequency of physics calls.

• User-specified grouping of schemes, subcycling.

• Under active developed at NOAA GSD and NCAR RAL

• V1 release March/April 2018 with GMTB SCM v2

• V2 release June/July 2018 with NOAA FV3-GFS v1

Adding a scheme to CCPP
• Write CCPP-compliant scheme (see below)

• Add scheme to list of schemes in CCPP

prebuild config, handle optional arguments

• Add scheme to runtime suite definition file

• Done (really!)

Adding CCPP to host model
• Is nearly as easy as adding a new scheme

• Add config for CCPP prebuild (see below)

• Write host model cap to abstract away

CCPP calls from dycore (init, run, finalize)

• Add prebuild script & CCPP to build system

module myscheme

contains

subroutine myscheme_init ()
end subroutine myscheme_init

subroutine myscheme_finalize()
end subroutine myscheme_finalize

!> \section arg_table_myscheme_run Argument Table
!!| local_name | standard_name | long_name | units | rank | type | kind | intent | optional |
!!|------------|---------------|-------------|-------|------|-----------|-------|--------|----------|
!!| prs | air_pressure | air pressure| Pa | 3 | real | kind=8| inout | F |
!!| rnd | random_number | random no | none | 3 | integer | kind=4| in | F
!!| errmsg | error_message | CCPP errmsg | none | 0 | character | len=* | out | F |
!!| errflg | error_flag | CCPP errflg | flag | 0 | integer | | out | F |
!!

subroutine myscheme_run (prs, geo, errmsg, errflg)

implicit none
real(kind=8), intent(inout) :: prs(:,:,:)
integer(kind=4), intent(in) :: rnd(:,:,:)
character(len=*), intent(out) :: errmsg
integer, intent(out) :: errflg

!--- initialize intent(out) variables
errmsg = ''
errflg = 0

!--- add your code here

end subroutine myscheme_run

end module myscheme

compliant schemes

A CCPP-compliant physics scheme

module with scheme name

three entry points scheme_{init,run,finalize}

standard metadata table for subroutines

in use; parsed by CCPP prebuild script

all information through argument

list, no “use external_module”

modern Fortran, specify intent

and use “implicit none”

initialize all intent(out) variables

error handling by host model,

set errflg = 1 and assign errmsg

performance through flexibility: can use

threading inside and/or outside physics!

Tested environments

• Metadata tables on host side provide information

on variables available from the host model.

• Required variables must be provided by host

model, incl. memory management (allocation).

• Python script ccpp_prebuild.py runs before

build time, matches variables by standard_name.

• Consistency checks of units, rank, type, etc.

• Auto-generates caps for physics schemes.

• Auto-generates code inside host model cap to

populate cdata structure (see below)

• Auto-generates makefiles for schemes, caps.

• cdata: lookup table standard_name à address in memory in C space.

• CCPP is implemented in the GMTB Single Column

Model SCM and the Geophysical Fluid Dynamics

Laboratory Finite Volume Cubed-

Sphere FV3-based NOAA GFS

• Hierarchical model development:

SCM allows for testing a physics

suite using external forcing w/o

dycore feedbacks

Host cap – runtime physics selection

• FV3: selected as dycore for Next

Generation Global Prediction System

(NGGPS) to replace GSM core of GFS

• Runs as a unified, fully-coupled

system, in NOAA’s Environmental

Modeling System infrastructure.

error handling by host model

add host model vars

to cdata structure

runtime suite definition file

Runtime suite definition file
<suite name="GFS_oper_2017" lib="gfsphys" ver="1">
<init>IPD_initialize</init>
...
<ipd part="2">
<subcycle loop="1">
...
<scheme>GFS_rrtmg_pre_run</scheme>
<scheme>rrtmg_sw_pre_run</scheme>
<scheme>rrtmg_sw_run</scheme>
<scheme>rrtmg_sw_post_run</scheme>
...

</subcycle>
</ipd>
...
<finalize>IPD_finalize</finalize>

</suite>

init

run

finalize

}scheme-specific interstitial

suite-specific interstitial

© UCAR

© NOAA

