
13B.6 STATISTICAL DESIGN OF EXPERIMENTS IN NUMERICAL 
 WEATHER PREDICTION: SOME EMERGING RESULTS 
 
 

Jeffrey A. Smith*, Richard S. Penc, John W. Raby 
US Army Research Laboratory, White Sands Missile Range, New Mexico 

 

1 INTRODUCTION 

A typical motivation in many Atmospheric 
Sciences analyses, especially those involving 
modeling, is to trace an adjustment in some set of 
parameters to an effect on some output metric of 
interest subject to some set of conditions.  One 
problem facing such analyses is how does the 
analyst tease out what could be a potentially small 
effect from what are, arguably, larger effects due 
to conditions such as the location of the modeling 
domain or the day(s) over which the model run is 
executed. We attempt to address these questions 
through the use a technique called “statistical 
design of experiments.” Though in wide use 
elsewhere, there is little evidence in the literature 
of statistical design of experiments use within the 
Atmospheric Science community. 

In section 2, we present some background on the 
basic elements of statistical design of experiments 
(DoE).  Section 3 follows with a description of our 
problem, and with section 4 how we employed 
DoE to address that problem.  In section 5 we 
define the model, domains and cases over which 
we conduct our analyses.  In section 6, we outline 
some of our current results, and in section 7, we 
present our initial conclusions.  We conclude the 
abstract by addressing a question about how DoE 
methods compare to Stein and Alpert (1993) in 
section 8. 

2 STATISTICAL DOE AND NUMERICAL 
WEATHER PREDICTION 

DoE, as a collection of methods, emerged from 
the early work of Fisher (1925, 1935) and his 
colleagues (e.g., Yates 1937) in their attempts to 
systematize the study of fertilizer and other 
treatments in support of the agricultural sciences 
at the Rothamsted Experimental Station in 
England.  Building on the work of Fisher and his 
colleagues, Box et al. (1978); Montgomery (2013) 
among many others applied DoE methods to 
many problem areas such as those in industrial 
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process optimization and control.  Beginning with 
McKay et al. (1979) and the work of Sacks et al. 
(1989a) and (1989b) researchers further extended 
DoE methods for use with numerical simulations 
involving continuous factors for application to 
uncertainty quantification.  More recently 
researchers such as Santner et al. (2003), 
Kleijnen et al. (2005) and Kleijnen (2008), have 
applied experimental design to the study of 
complex simulation codes where the factors may 
be a mix of continuous, categorical and/or discrete 
valued.  In almost a 100 years of research, 
experimental design has evolved into a robust and 
comprehensive collection of methodologies that 
allow rigorous experimentation in many complex 
systems far removed from Fisher’s initial 
application. 

Despite the evolution of these techniques in other 
fields, there is little direct evidence to suggest that 
researchers have applied these techniques to 
study numerical weather prediction (NWP).  
Absent any direct evidence, Berci et al. (2014); 
Rahimi et al. (2014); and Zhu et al. (2015) have 
applied experimental design methods to 
computational fluid dynamics codes as part of an 
engineering development process. By recognizing 
that computational fluid dynamics codes share 
many of the same complexities exhibited by NWP, 
we suggest that experimental design may prove 
useful in forecasting the weather via mathematical 
models as well as the analysis of the attendant 
models. 

3 PROBLEM DESCRIPTION 

Unlike a typical operational use of NWP that may 
provide a forecast over a fixed region and which 
may be tuned over time to perform well, NWP for 
tactical forces will likely have neither of those 
luxuries; time and personnel with specialized 
training in NWP are premiums on a tactical 
battlefield.  This fact often precludes detailed error 
analyses of why forecasts were “off” and how they 
may be improved.  Thus we ask the question: 



“how can we provide the warfighter with a NWP 
capability that is both ‘robust’ and capable of 
providing a ‘good’ forecast with minimal user 
intervention?”  Although answering this question 
completely is beyond the scope of this extended 
abstract, we suggest that DoE can provide the 
means to answer this question. 

Consider a forecast as a map from an observed to 
some future atmospheric state.  Mathematically, 
we say: 𝑓𝑓: 𝑥𝑥 → 𝑦𝑦, where 𝑓𝑓 can be a NWP code 
such as WRF-ARW (Skamarock et al. 2008), 𝑥𝑥 
represents initialization conditions and 𝑦𝑦 a 
forecast.  Because NWP codes often have many 
user selectable features such as parameterization 
schemes, nesting ratios, integration times, etc. it is 
useful to think of 𝑓𝑓 as a set of functions where 
each 𝑓𝑓𝑖𝑖 ∈ 𝑓𝑓, 𝑖𝑖 = 1, 2, … ,𝑁𝑁 is a specific configuration 
of the NWP code.  Note, 𝑁𝑁 in this case, though 
countable, is so large as to preclude search using 
brute force methods. 

With these definitions we define our problem as 
one of finding 𝑓𝑓(𝑖𝑖) ∈ 𝑓𝑓 that, for purposes of this 
paper, minimizes the difference between the 
forecast and observed values at a point in time.  
Note: the parenthesis around the subscript 
indicates our object of search; a specific, but as 
yet unknown configuration satisfying our criteria. 

4 APPLYING DOE 

Though the DoE methods are general in nature we 
restrict our attention exclusively to WRF-ARW 
(henceforth WRF) so that our application of these 
methods are clear.  Figure 1 shows interaction of 
the macro level processes modeled within WRF.  
It is the complex interaction between 
parameterized processes operating on the initial 
conditions that produce a forecast value at a given 
point in space.  Thus, to attempt answering the 
question raised in section 3 requires that we first 
create a meta-model of the error.  To do so, will 
strategically sample 𝑓𝑓 using a ‘few’ runs in order to 
identify those parameterized processes that are 
dominant for a set of domains.  Our goal here is to 
create a “screening experiment” wherein we 
experiment with many factors with a goal of 
reducing them to a few that are statistically driving 
the error. 

To create our design, we employ a linear program 
to create a “design matrix” which we define as a 
𝑚𝑚 𝑥𝑥 𝑛𝑛 matrix of run configurations wherein each 
row of that matrix is a 𝑓𝑓𝑖𝑖 ∈ 𝑓𝑓 as we have described 
above.  The specific method we’ve adapted, 
based on Vieira et al. (2011; 2013), supports 

continuous, discrete, and categorical factors.  For 
our design, we treat all the factors as categorical 
factors (Smith and Penc 2015, 2016; Smith et al. 
2017, 2018).  By using a linear program, we can 
create an experimental design that is both “nearly 
orthogonal” which allows us to separate the effects 
of the various factors in analysis, and “balanced” 
which results in statistics that are not overly 
skewed.  In addition, linear programs allow us to 
allocate specific arrangements to one of a desired 
set of domains as well as a particular day.  In this 
manner, we create what are called blocks that 
allow us to account for experimental condition that 
we cannot control yet are important considerations 
in the analysis. 

 
Figure 1: Direct interactions of parameterization 
schemes in WRF (Dudhia 2015) 

The statistical model we are considering is given 
by  

 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑖𝑖 + 𝐶𝐶𝑖𝑖 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1) 

where 𝛿𝛿 is the model bias 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, with 
𝐹𝐹𝑖𝑖  representing the model forecast at some station 
in the domain, and 𝑂𝑂𝑖𝑖 the observed value at the 
same station, 𝐷𝐷 models the effect of the domain 
on the error, 𝐶𝐶 models the effect of the day which 
serves as a proxy for the large scale synoptic 
situation, 𝑇𝑇 the specific configuration of the model 
used to produce the data, and 𝜀𝜀 any residual error.  
The subscripts 𝑖𝑖, 𝑗𝑗 and 𝑘𝑘 index the domain, case, 
and treatment effects while 𝑙𝑙 indexes the matched 
forecast – observation pair data element produced 
by MET Point-Stat (National Center for 
Atmospheric Research 2016) for a given domain 
and case combination. 

We present the resulting experiment in the next 
section. 



5 THE EXPERIMENT 

The model employed uses WRF (Skamarock et al. 
2008) initialized with 0.5° GFS (NOAA 2018b) 
forecast data providing gridded background fields 
with raw observations analyzed onto the 
background fields; 1/12° (~9 km) RTG high 
resolution SST (NOAA2018a); and 1 km NOHRSC 
SNODAS (NOAA 2018c) snow data when 
available and GFS snow data elsewhere.  We 
conducted data assimilation using a 6-h pre-
forecast with observation nudging (12-18 UTC).  
Observation nudging during data assimilation uses 
TAMDAR (AirDat 2018) aircraft data and various 
MADIS (NOAA 2018d) datasets [standard surface 
observations, mesonet surface observations, 
maritime surface observations, profiler data, 
rawinsondes, and ACARS (aircraft) data 
(Mamrosh 1997)] (Dumais and Reen 2013; 
Dumais et al. 2015).  The model top was set at 
10mb for all runs. 

As equation (1) captures, there are two elements 
which complicate this design: 1), the region 
modeled, and 2) the large scale synoptic 
conditions driving our forecast.  While these 
elements must be considered in our analysis they 
are, in the statistical sense, nuisance factors by 
which we mean that the ‘signal’ sought is buried 
within what is likely to be the larger signal 
contributed by the regional and synoptic pictures.  
To account for these factors, we consider two 
domains with the grid arrangement defined in 
Table 1 and depicted in Figure 2.  The synoptic 
features of the atmosphere are considered using 
the case days as given in Table 2.  Our rationale in 
choosing these particular domains was twofold: 1) 
both domains are densely populated with various 
stations which should provide good observational 
comparisons, and 2) the distance between the 
domains provides some potential insight into the 
effects of latitude on the forecast as well as an 
approximately similar synoptic weather situation 
we expect to allow us to treat domain and case 
day as statistically independent. 

Table 1: Grid configuration 

Scale (km) Points Dimension (km) 

9 175 × 175 1566 × 1566 

3 242 × 241 720 × 720 

1 127 × 127 126 × 126 

Table 3 arrays the parameterization schemes we 
use to create our design, and Table 4 is the 

resulting design matrix.  Examine Table 3 and 
note that the two columns noted as ‘blocks’ 
correspond to the terms 𝐷𝐷 and 𝐶𝐶 while the six 
columns marked as ‘parameterization schemes’ 
model 𝑇𝑇 in (1). 

 
Figure 2: Model grid centers.  The left domain is 
centered at San Francisco Airport and the right 
domain centered at San Diego Airport. 

As a check on our design, we convert each factor 
and level to a numerical form, i.e., for the domain 
“SAN” write 1, and “SFO” write 2, etc.  Once 
complete, we can find some indication of how well 
our design fared in terms of orthogonality and 
balance by examining the correlation matrix.  This 
matrix is given in Figure 3.  Figure 3 leverages the 
symmetry property of the correlation matrix to 
provide the pairwise correlation coefficient in the 
upper triangle, and in the lower triangle, a dot 
where we have made a run exhibiting the 
particular set of characteristics described by the 
row and column labels.  Note, a given run will 
result in multiple dots depending as the pair 
changes.  Along the main diagonal we have used 
a shape to give us a rough sense of balance in the 
design.   

 
Figure 3: Assessing the strength of our design 
through the correlation matrix.



Table 2: The synoptic description for each domain by particular case. 

  Domain 

Case1 Dates (2012) San Francisco (SFO)  San Diego (SAN)  

1 Feb. 07–08 An upper level trough with associated 
frontal system moved onshore which led to 
widespread precipitation in the region that 
diminished mid-period. 

Surface front / upper level trough moved 
onshore, which led to widespread 
precipitation in the region. 

2 Feb. 09–10 Quiescent weather dominated the region 
with an upper level ridge remaining 
centered over central California 

Quiescent weather was in place with an 
upper level ridge centered over central 
California at 12 UTC. 

3 Feb. 16–17 An upper level ridge located over northern 
California in combination with a surface 
high pressure area centered over the 
Rocky Mountains east of the domain 
produced quiescent weather in the region. 

An upper-level low located near the 
California/Arizona border with Mexico at 12 
UTC brought precipitation to that portion of 
the domain. This pattern moved south and 
east over the course of the day. 

4 Mar. 01–02 A weak shortwave upper level trough with 
associated cold front resulted in 
considerable cloudiness and light 
precipitation over the region until after mid-
period when conditions stabilized following 
frontal passage.   

A weak shortwave trough resulted in 
precipitation in northern California at the 
beginning of the period that spread to 
Nevada, then moved southward and 
decreased in coverage. 

5 Mar. 05–06 Weak surface pressure gradients at the 
surface and broad zonal flow aloft slowly 
gave way to stronger synoptic forcing in 
advance of a cold front that approached 
the region near the end of the period 
bringing increased cloudiness, but very 
limited precipitation. 

Widespread high-level cloudiness due to 
weak upper-level low pressure but very 
limited precipitation. 

1: All case studies are 24 hours in length, running from 12 UTC to 12 UTC on the days listed with forecasts 
made on the hour. 

Examining the correlation coefficients in Figure 3 
reveals that in most cases the correlation is less 
than 10% suggesting the design is very nearly 
orthogonal, with only the RaLW (long wave 
radiation scheme) being somewhat strongly 
correlated with the PBL_SL (boundary layer 
coupled with the surface layer) factor.  Vieira et al. 
(2011) and Vieira et al. (2013) cite Bathke (2004) 
and assert that correlations less than about 20% 
typically can be analyzed as if the factors were 
orthogonal.  Given that only RaLW and PBL_SL 
factors marginally depart from this standard, we 
will proceed as if these two factors were indeed 
orthogonal.  Although the design is not in perfect 
balance, a reasonable degree of balance does 
exist which suggests that no one factor setting will 
dominate the analysis. 

6 EMERGING RESULTS 

Model runs based on the design as described in 
the previous section were configured and 
executed on the Army’s High Performance 
Computer name “excalibur”.  Of the designed 40 
runs, approximately 50% of those runs “crashed” 
at the outset, a condition we attribute to 
configurations that have not been tested before or 
are just incompatible with current WRF code.  
Accordingly, we adapted the design and recovered 
approximately 8 runs for a total of 28 runs for 
which we present emerging results.  These runs 
were post processed using MET Point-Stat 
(National Center for Atmospheric Research 2016) 
to produce matched pair files for each forecast 
hour.  All files were combined using the R 
environment (R Core Team 2017) and the 



tidyverse approach to data (Wickham and 
Grolemund 2016; Wickham 2017).  We 
augmented the resulting data frame with the 

conditions based on our design and computed 
bias values for each matched pair. 

 

Table 3: Parameterization schemes employed in the design by WRF namelist entry1 

Planetary Bound. Layer, Surface (PBL, SL) Short Wave (RaSW) 
1, 1 
2, 2 
5, 1 
7, 7 
11, 1 

YSU with revised MM5  
MYJ with ETA  
MYNN2 with revised MM5 
ACM2 with Pleim-Xu  
Shin-Hong with revised MM5 

1 
2 
4 
7 
99 

Dudhia 
Goddard 
RRTMG 
FLG 
GFDL 

Cumulus (CU)2 Long Wave (RaLW) 
1 
2 
6 
16 
93 

KainFritsch (KF) 
Betts-Miller-Janjic (BMJ) 
Tiedke 
New Tiedke 
Grell-Devenyi 

1 
4 
5 
7 
99 

RRTM  
RRTMG 
New Goddard  
FLG3 
GFDL 

Microphysics (Micro) Land Surface Model (LSM) 
2 
4 
5 
7 
8 

Lin (Purdue) 
WSM5 
ETA (Ferrier) 
Goddard 
Thompson 

1 
2 
3 
5 

5 layer Thermal Diffusion 
NOAH 
RUC operational 
CLMv4 

1: For specific references to the physics schemes along with translations of the acronyms please refer 
to Skamarock et al. (2008) 

2: Cumulus scheme applied to the outer domain only (Not considered in this extended abstract) 
3: Every run with the FLG long wave radiation scheme failed, but not every failed run used the FLG 

scheme  We are investigating replacement schemes for these failed points in order to come closer to 
our desired 40 runs. 

We compared, the forecasts at two times: 21Z and 
00Z for each domain and case combination as 
well as for the parameterization classes depicted 
in Figure 1 save the cumulus scheme which was 
ignored for this study.  We calculated the mean 
bias for each domain and case day as a function 
of the boundary layer, microphysical and land 
surface as well as the short wave and long wave 
radiation parameterization schemes.  Results for a 
typical comparison case are given in Figure 6 for 
the Z2 temperature values.   

In Figure 6, we note distinct variation as a function 
of domain and case days which is to be expected.  
However, one also notes variation due both to the 
physics parameterization schemes and time.  We 

have yet to carry out the detailed analysis, but 
visual examination of these changes, as well as 
the number of matched pairs (≈ 200) for each 
point on the figure, suggests that these changes, 
as mean comparisons, are likely to be statistically 
significant.  Furthermore, the regularity in Figure 6 
suggests a reasonable expectation that we will be 
able to estimate an effect due to the domain and 
case day factors.  Should this expectation prove 
fruitful, we will be able to remove these large scale 
effects from the data and focus on the treatment 
effects [the 𝑇𝑇 in (1)] and potentially partition that 
effect into direct contributions of the physical 
parameterization schemes, and thus the 
parameterization classes given in Figure 1. 



7 DISCUSSION AND CONCLUSIONS 

One common criticism that is often raised in a 
discussion on design of experiments is how can 
one show value?  Penc et al. (2018a, b) studied 
the variation of Bias and RMSE exclusively as a 
function of a range of PBL schemes that included 
those found in Table 3.  In Figure 4 we show the 
mean dew point bias for a portion of that study 

based solely on the PBL schemes found in Table 
3, and in Figure 5 we show a Box plot of the bias 
values at 00 UTC.  From Figure 4 we see little 
evidence that the various schemes perform 
statistically different at 00 UTC, but from the Box 
plot we see that there may be a difference in the 
means (location).

 

Table 4: The design matrix arrived at, and used in this study. 
 

BLOCKS PARAMETERIZATION SCHEMES 
CASE*†  DOMAIN‡  CASE 

DAY  
BL_PBL1  SF_SFCLAY1  MP  RA_LW2 RA_SW  SF_SURFACE3  

CASE24  SAN 02/07 MYNN2  revised MM5  ETA (Ferrier)  NG  RRTMG  CLMv4  
CASE3  SAN 02/07 Shin-Hong  revised MM5  Goddard  RRTM  Goddard  NOAH  
CASE27  SAN 02/09 MYNN2  revised MM5  Lin (Purdue)  NG  Goddard  RUC operational  
CASE6  SAN 02/09 Shin-Hong  revised MM5  Lin (Purdue)  RRTMG  GFDL  NOAH  
CASE31  SAN 02/09 MYJ  ETA  Thompson  RRTM  Dudhia  5 layer  
CASE17  SAN 02/09 MYNN2  revised MM5  Lin (Purdue)  NG  Dudhia  RUC operational  
CASE22  SAN 02/16 MYJ  ETA  WSM5  GFDL  Goddard  NOAH  
CASE23  SAN 02/16 ACM2  Pleim-Xu  Thompson  NG  GFDL  5 layer  
CASE16  SAN 02/16 YSU  revised MM5  Goddard  GFDL  GFDL  CLMv4  
CASE28  SAN 03/01 MYJ  ETA  Thompson  NG  Goddard  RUC operational  
CASE34  SAN 03/01 YSU  revised MM5  Thompson  GFDL  FLG  NOAH  
CASE21  SAN 03/01 MYJ  ETA  WSM5  GFDL  Dudhia  NOAH  
CASE5  SAN 03/05 Shin-Hong  revised MM5  ETA (Ferrier)  RRTM  Goddard  CLMv4  
CASE35-2  SAN 03/05 YSU  revised MM5  Lin (Purdue)  RRTM  GFDL  CLMv4  
CASE4  SFO 02/07 MYNN2  revised MM5  Thompson  NG  RRTMG  RUC operational  
CASE38  SFO 02/07 YSU  revised MM5  WSM5  RRTMG  Goddard  RUC operational  
CASE12  SFO 02/07 MYJ  ETA  Thompson  RRTMG  Dudhia  RUC operational  
CASE40-1  SFO 02/09 ACM2  Pleim-Xu  Goddard  RRTMG  FLG  RUC operational  
CASE2-1  SFO 02/09 MYNN2  revised MM5  Lin (Purdue)  NG  Dudhia  CLMv4  
CASE9  SFO 02/16 YSU  revised MM5  Lin (Purdue)  RRTM  GFDL  RUC operational  
CASE7  SFO 02/16 Shin-Hong  revised MM5  Goddard  RRTMG  GFDL  RUC operational  
CASE20  SFO 02/16 MYJ  ETA  Lin (Purdue)  GFDL  RRTMG  5 layer  
CASE26  SFO 03/01 MYNN2  revised MM5  Thompson  GFDL  Goddard  CLMv4  
CASE14  SFO 03/01 ACM2  Pleim-Xu  Goddard  GFDL  RRTMG  RUC operational  
CASE15  SFO 03/01 ACM2  Pleim-Xu  WSM5  RRTMG  GFDL  5 layer  
CASE8  SFO 03/05 YSU  revised MM5  Thompson  RRTM  Dudhia  5 layer  
CASE13  SFO 03/05 YSU  revised MM5  Goddard  NG  Dudhia  NOAH  
CASE39  SFO 03/05 MYNN2  revised MM5  ETA (Ferrier)  NG  FLG  RUC operational  
Note: All model runs were executed using WRF 3.8.1 on the excalibur super computer.  
1 Although BL_PBL and SF_SFCLAY are reported as separate factors, they were treated as a single factor for the design. Thus, 
‘MYNN2’ and ‘revised MM5’ are considered as one level of a single factor. 
2 NG is New Goddard. 
3 5 layer is 5 layer Thermal Diffusion. 
* Runs are not in design order 
† Numbers after dashes in case name, e.g., case35-2, indicate that run was repeated after a after a change in parameterization 
scheme.  The specific number indicates the number of times that a change was made. 
‡ SAN: Domain Center near San Diego Airport. SFO: Domain Center near San Francisco Airport, see Figure 2. 



 
Figure 4: Mean Dew Point Temperature Bias (K) 
for a subset of data from Penc et al. (2018a, b) 

Using R language (R Core Team 2017) we 
compared the mean biases pairwise, the results of 
which are given Table 5.  This test reveals that the 
MYJ PBL scheme behaves differently in 
statistically significant manner than the remaining 
schemes.  This observation holds true save only 
for the MYNN2 scheme at 00 UTC.  When 
conducted at different times, other results are 
obtained. 

 
Figure 5: Box plot of Dew Point Temperature Bias 
(K) at 00 UTC for a subset of data from Penc et al. 
(2018a, b) 

Penc et al. (2018a, b) commented on the relative 
lack of variation among the various boundary layer 
schemes and a simple calculation suggests that 
only 3% to 4% of total model variance is 
attributable solely to the variation in PBL scheme. 
This calculation is of ηG2 as defined by Bakeman 
(2005)  and implemented in the lsr package 
(Navarro 2015) for the R statistical analysis 
environment.  

 

Table 5: Tukey's Honest Significant Difference 
Test conducted at 0.01 significance level. 

  Confidence Range Adjusted  

Comparison Estimate Low High p value 

MYJ-ACM21 1.347748 0.523185 2.172312 1.18E-06 

MYNN2-ACM2 0.817729 -0.00683 1.642293 0.010937 

SH-ACM2 0.40435 -0.42021 1.228913 0.497443 

YSU-ACM2 0.419775 -0.40479 1.244339 0.458493 

MYNN2-MYJ -0.53002 -1.35458 0.294545 0.221756 

SH-MYJ1 -0.9434 -1.76796 -0.11883 0.001859 

YSU-MYJ1 -0.92797 -1.75254 -0.10341 0.002344 

SH-MYNN2 -0.41338 -1.23794 0.411184 0.474543 

YSU-MYNN2 -0.39795 -1.22252 0.426609 0.513797 

YSU-SH 0.015425 -0.80914 0.839989 0.999997 

1: Statistically significant effect at 0.01 (Also noted by italics). 
 

Our emerging results suggest that we can 
estimate an effect due to domain, as well as one 
due to the synoptic condition (using case day as a 
proxy for the synoptic condition).  In doing so, we 
expect to be able examine the contribution of the 
parameterization schemes as the sole remaining 
source of variation in the data.  Consequently, we 
expect we will be able to shed numerical insight 
into the various flows between schemes described 
in Figure 1.  This is an advance in our ability 
investigate how NWP perform under various 
conditions, which consequently allows us to 
undertake a more macro view of the model for 
verification purposes.  The effect of all of this 
implies that for a study such as Penc et al. (2018a, 
b), we can peer more deeply into the model and 
potentially diagnose more substantial effects with 
DoE methods at a modest increase in model runs.  
This ability provides an answer to the question we 
raised at the beginning of this section. 

8 FACTOR SEPARATION VS DOE 

Smith et al. (2018) discussed some preliminary 
consequences of this work at the Annual AMS 
meeting. During the discussion, Ligia Bernardet, 
Research Scientist with the Cooperative Institute 
for Research in Environmental Sciences (CIRES) 
and NOAA Earth System Research Laboratory, 
asked “How does this work differ from that of Stein 
and Alpert (1993) on factor separation?” The 
answer to that question comes in two parts, the 
methods used to: 1) probe the model with the 
desired variations to produce the sample data, and 



2) form the analysis based on that same sample 
data. 

Addressing the first part, we note no difference 
between Stein and Alpert and DoE when sampling 
the model. Though Stein and Alpert did not state 
as such, the approach they employed to sample 
their model is what is called a 2k Full Factorial 
design (e.g., Montgomery 2013) in the DoE 
literature. In this notation, the term 2k means k 
factors are considered at 2 levels, a method 
requiring, at a minimum, a full 2k runs to be 
performed which is the same for Stein and Alpert 
for the same conditions. 

Considering the second part, we note that the 
typical analysis methods employed when 
analyzing design experiments, and those 
employed by Stein and Alpert are wholly different.  
Stein and Alpert base their method on identifying a 
function from the data using a method based on a 
Taylor series expansion whereas for DoE, one 
typically uses an analysis of variance method to 
identify a generalized linear model that minimizes 
the residual model error in the squared sense.  
Initial steps in investigating this question suggest 
that when “noise” or “measurement error” is not 
present, the method of Stein and Alpert does 
identify the function when we test against toy 
problems; however, this appears not to be the 
case when noise or error is included as is the case 
when one investigates model bias error when the 

observations compared against the forecast come 
with some unknown zero mean Gaussian error. 

To sum up our comment regarding Stein and 
Alpert, we note that although the 2k Full Factorial 
designs are considered the “gold standard” in 
DoE, they are just one in an array of designs 
available in the statistical literature.  In many 
cases these other designs can shed insight into 
particular analytical questions by trading off, say, 
the inability to identify some higher order 
interaction effects for a decrease in the 
computational expense of producing the data.  
This fact alone suggests to us that there is merit in 
considering a role for design of experiments in the 
Atmospheric Science.  Finally, one of us (Smith) 
along with a summer student, will continue to 
investigate this second question, and expect to 
present the results of this study at a future time. 
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Figure 6:  Mean Temperature Bias (K) values at the Z2 level as a function of the Boundary Layer, Micro 
Physics, Land Surface, Short Wave Radiation and Long Wave Radiation parameterization schemes for a 
midafternoon (21Z) and transition time (00Z) period for each of two domains and five case days.  All plots 
are scaled and arranged the same so horizontal and vertical comparisons are possible. 
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