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1 INTRODUCTION 

The US Army Research Laboratory (ARL) has 
been performing long-term research into 
application of the Advanced Research version of 
the Weather Research and Forecast (WRF-ARW) 
model (Skamarock et al. 2008) for battlefield short-
range forecasting in a field-deployed location. The 
purpose of these forecasts is to provide weather 
support for mission planning and execution and to 
augment coarser resolution models for specific 
applications required by field deployed units.   

There are three primary goals in this research. 
The ultimate goal is to deploy WRF in a forward 
location and produce timely and useful 0- to 3-h 
and perhaps 0- to 6-h forecasts (nowcasts) 
tailored to the individual end user. Secondly, we 
need to increase the resolution so that user needs 
are met. Specifically, we require a grid spacing of 
roughly 1 km to resolve approximately 5-km-scale 
atmospheric phenomena that are necessary to 
resolve the detailed flow field over complex terrain.  

Thirdly, there is a need to provide a measure of 
forecast uncertainty. Since WRE-N system 
operators are unlikely to have a meteorological 
background, the need to express forecast 
confidence is essential. There are a number of 
ways to achieve this. One is to use a time-lagged 
ensemble (Lu et al. 2007), which involves setting 
up and running the model in a rapid update cycle 
mode and compiling statistics and variances 
based on sequential model output. Another 
method to achieve the goal of developing a 
measure of uncertainty involves using physics-
based ensembles (Stensrud et al. 2000). This 
method involves making several model runs with 
different physics packages selected and 
calculating model ensemble statistics from the 
model runs.  

The current research has as its goal examining the 
performance of a number of physics packages to 
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see which performs best in a complex terrain 
environment. We selected a southern California 
domain that has been widely used and 
documented at ARL (Dumais et al. 2009, 2013; 
Dyer et al. 2015, 2016; Foley et al. 2015). The 
inner nests of this domain include coastal, 
transitional, mountainous, marine, urban, 
agricultural, forested, and desert environments. To 
focus on and examine the verification of surface 
and near-surface properties and focus on the 
diurnal variation of the convective boundary layer 
(BL) during weak synoptic forcing, we examined a 
number of planetary BL (PBL) options using the 
latest version of WRF-ARW (v.3.8.1, when this 
research began). 

The primary goal in the current research is to 
determine which of the BL/SL parameterization 
schemes works best for generalized forward 
deployments where the deployed location is not 
known in advance. Because the modeling system 
is preconfigured, one scheme will be set up for 
use in the deployed location, regardless of 
location. Our modeling domain was also chosen to 
represent a number of geographic regions 
focusing on complex terrain. This goal is 
challenging from the standpoint of not only 
capturing a complex range of physical processes, 
land use, and elevations, but also accounting for 
the steep gradients in elevation, which can 
potentially make achieving modeling stability 
criteria more difficult. 

2 MODEL CONFIGURATION 

The numerical model used in this analysis, the 
WRF-ARW (Skamarock 2008), is a community 
weather forecast model designed and supported 
by NCAR. For the purposes of this study, WRF 
v3.8.1 was selected.  This study uses a triple nest 
configuration of WRF-ARW centered 
approximately near San Diego, California (Figure 
1). The domain includes a variety of geography, 



land use, and topography. The marine 
environment, coastal environment, large valley, 
gently sloping desert, and mountainous terrain are 
all represented. Regarding land use, there are 
urban, suburban, agricultural, grassland, arid, and 
mountainous areas with a variety of subtropical 
and mid-latitude vegetation including grassland 
and forest. The domains are shown in Fig. 1. 
WRE-N was employed with an outer 9-km nest of 
175 × 175 grid points (1566 × 1566 km) (D1), 242 
× 241 grid points on the middle 3-km nest (720 × 
720km) (D2), and 127 × 127 grid points on the 1-
km inner nest (126 × 126 km) (D3). The model top 
was selected to be 10mb. Although we 
concentrated on analysis of the 09-10 Feb 2012 
event, additional simulations were also run for the 
other 4 days in our dataset. We chose to 
concentrate on this case since the primary intent 
of this study was to examine the model’s ability to 
capture the development of the daytime CBL and 
transition to the nocturnal BL. 
 

  

Figure 1.  Location of the triple nested model 
domain used in these simulations. 

The model specifications common to all 7 
experiments using WRF-ARW as employed in this 
study are shown in Table 1. The FDDA option 
used in these model runs is based on observation 
nudging (Liu et al. 2005; Deng et al. 2009). This 
option is much less computationally expensive 
than traditional 4-D variational data assimilation 
(Huang et al. 2009) or ensemble Kalman filtering 
(Zupanski et al. 2008). Table 2 lists some of the 
data assimilated into the first 6h of the 24h 
forecast. 

 

 

Table 1:  Common configuration used in the WRF 
simulations for this study. 

Namelist Parameter Option Selected 

Shortwave Radiation Dudhia Scheme 

Longwave Radiation RRTM 

Explicit moist microphysics Thompson 

Cumulus parameterization Kain-Fritsch 9km only, explicit 1, 3km 

PBL scheme Varies (elsewhere) 

Surface layer Paired with PBL scheme 

Land Surface Scheme NOAH 

Time step to grid ratio (s/km) 3:1 

Horizontal subgrid diffusion Second-order on coordinate surfaces 

Subgrid turbulence closure Horizontal Smagorinsky first order 

 

Table 2:  Selected data assimilation switches as 
configured for this study. 

setting name setting value 

use_tamdar yes 

use_madis_mesonet yes 

use_madis_profiler_npn yes 

use_madis_acars yes 

use_madis_maritime yes 

use_madis_metar yes 

use_madis_raob yes 

use_madis_sao yes 

use_madis_satwin no 

use_madis_satwind1h no 

geog_data_res 2m, 30s, 30s 

 

The 7 PBL/SL parameterization combinations 
selected for this study are listed in Table 3. In 
each of these, the default SL scheme was coupled 
with the PBL scheme being tested because they 
are generally accepted and the most widely used 
by researchers. Where there was a matching SL, 
we used that option. For the others, where multiple 
options existed for SL choice, we used the revised 
MM5 SL scheme. That scheme is reported to work 
with many of the PBL options.  

 

 

 

 

 

 



Table 3:  PBL/SL combinations evaluated. 

Case 
no. 

PBL/SL 
option 

PBL scheme SL scheme 

1 5 / 5 

Mellor-Yamada 
Nakanishi and 
Niino (MYNN) 

Nakanishi and 
Niino PBL’s SL 
scheme 

2 11 / 1 
Shin-Hong 
Scheme (SH) 

Revised MM5 
SL scheme 

3 2 / 2 

Mellor-Yamada-
Janjic Scheme 
(MYJ) 

Eta similarity 
SL scheme 

4 1 / 1 
Yonsei University 
Scheme (YSU) 

Revised MM5 
SL scheme 

5 8 / 1 
Bougeault-
Lacarrère PBL 
(BouLac) 

Revised MM5 
SL scheme 

6 4 / 4 
Quasi-Normal 
Scale Elimination 
(QNSE) 

QNSE PBL 
scheme’s SL 
option 

7 7 / 1 
Asymmetric 
Convective Model 
(ACM2) 

Revised MM5 
SL scheme 

 

3 RESULTS 

Model bias and RMSE were calculated for each of 
the 7 members in the ensemble for each hour of 
the simulation, including the data assimilation 
(hours 1–6), the nowcast period (hours 7–12), and 
the extended forecast (hours 13–24). Over the 
model domain, these periods roughly correspond 
to morning, afternoon, and nighttime hours, 
respectively. This corresponds to, respectively, 
1300 UTC 09 February 2012 through 1800 UTC 
09 February (0500–1000 Pacific Standard Time 
[PST]), 1900 UTC 09 February 2012 through 0000 
UTC 10 February 2012 (1100–1600 PST), and 
0100 UTC 10 February 2012 through 1200 UTC 
10 February 2012 (1700–0400 PST). In addition, 
the overall model statistics were computed (hours 
1–24) and reflect the period 1300 UTC 09 
February 2012 through 1200 UTC 10 February 
2012. 

All of the analyses we present apply to the 
innermost D3 (1-km) domain. The temperature 
bias is shown in Fig. 2. During the data 
assimilation period (1200–1800 UTC) all of the 
schemes show a small forecast bias, typically less 
than 1 K. While the ACM2, BouLac, MYJ, SH, and 
YSU schemes perform very similarly, the MYNN 
and QNSE schemes diverge, showing a negative 
bias, underestimating the surface temperature. 
The former schemes slightly overestimate the 
surface temperature at 2m for the hours 1400 

through 1600 UTC. After hour 4 of the simulation, 
all of the schemes converge and tend toward 
underestimating the surface temperature.  

 
 
Figure 2: Temperature mean bias for the 7 
members. 
 
The bias for the DPT is shown in Fig. 3. For 
the majority of the forecast cycle, the DPT (at 
the surface) is underestimated by the model 
as shown by the negative bias, with the 
exception being between 0000 and 0200 UTC 
(1600–1800 PST). During these 3 h, which 
occur in late afternoon leading into early 
evening, the DPT is overestimated. 
Throughout the simulation, there is larger 
spread among the individual schemes than for 
the temperature bias. 
 

 
Figure 3: Dew point mean bias for the 7 
members. 
 
Looking at the surface wind speed (Fig. 4) bias 
we again see differing behavior for the 3 
periods: assimilation, nowcast, and extended 
forecast. The model overestimates the surface 
wind during data assimilation by as much as 2 
ms–1 but then quickly settles down to near zero 



bias by 4 h into the simulation. There is more 
spread in the model bias by the nowcast 
period, with the greatest bias occurring with the 
QNSE scheme. QNSE overestimates the wind 
speed by >1 ms–1 from hours 9–10 of the 
simulation. In contrast, the ACM2 scheme 
underestimates the wind by as much as 1 ms–1 
around 8 h into the simulation. As in all of the 
previous analyses, the model bias contrast 
between the 7 schemes is most pronounced for 
the latter half of the simulation time. For wind 
speed bias, the best performers at nighttime 
are YSU, SH, and ACM2, with near zero bias 
for the extended forecast period. The worst 
performer for the extended forecast is QNSE, 
followed by MYJ, with a mean bias error of 
approximately 1 ms–1, overestimating the 
surface wind. Note that the physics differences 
appear to be most pronounced during 
nighttime. 

 

Figure 4: Wind speed mean bias for the 7 
members. 

 

We also performed an analysis of the model 
RMSE. The surface (2m) temperature RMSE for 
each of the members is shown in Fig. 5. The 
RMSE averages approximately 2.6 K at the 
beginning of the simulation time. The MYNN 
scheme shows the largest RMSE for the initial 4 h 
while QNSE shows the lowest. After 1400 UTC, 
the RMSE decreases to around 2 K for all of the 
members. For the nowcast period (6–12 h 
simulation time), the RMSE increases fairly 
linearly from about 1.5 to 3.5 K, with the highest 
RMSE associated with the MYNN and QNSE 
schemes. After 15 h, the RMSE of the members 
typically varies from 2.5 to 3.5 K. BouLac, ACM2, 
SH, and YSU follow each other closely toward the 
ending hours of the simulation in the extended 
forecast. Since SH is based on YSU, the similarity 
between these 2 schemes is not unexpected. The 

closeness of these schemes reflects the similarity 
in the formulation of the physics for the nighttime 
case, and these times reflect the nighttime 
scenario over the model domain. The increase of 
RMSE toward the end of the simulation is not 
unexpected since the errors tend to be cumulative. 

 

Figure 5: Temperature RMSE for the 7 members 

Figure 6 shows the DPT RMSE for each of the 
schemes tested. The mean RMSE at the point of 
initialization is approximately 3.3 K, which is 
significant. As data assimilation progresses, the 
RMSE increases to approximately 3.8 K, with an 
increased spread among the schemes tested. 
During the nowcast period the RMSE decreases 
from approximately 4.0 to 2.5 K, corresponding to 
the development of the daytime CBL, and 
decreasing by late afternoon (1600–1800 PST). 
There is little spread among the model members. 
The most notable spread among the model 
members occurs during the early part of the 
nowcast period. MYJ, QNSE, and BouLac perform 
the best during this time with the lowest RMSE of 
all the members. MYNN and ACM2 have the 
highest RMSE of the 7 members during the period 
extending from the end of data assimilation 
through the early part of the 6-h nowcast period. 
There is overall no clearly superior scheme to 
choose from. 



 

Figure 6: Dew point RMSE for the 7 members. 

The wind speed RMSE for the 7 schemes is 
shown in Fig. 7. At model initialization, the RMSE 
is 1.6 ms–1. RMSE then increases to over 3 ms–1 
in the first simulation hour, then settles to about 
2.5 ms–1 the next hour. The RMSE continues to 
decrease for the next 5 h to around 1.5 ms–1 
where it remains for the remainder of the model 
simulation time. There is little difference between 
the individual schemes during the first 5 h. After 
that, the spread between individual BL schemes 
increases. During the nowcast period, which 
corresponds to daytime, the QNSE scheme shows 
the greatest RMSE, followed by BouLac and MYJ. 
The remaining schemes (YSU, SH, YSU, and 
MYNN) have the lowest RMSE. The latter half of 
the simulation time, during the formation and 
maintenance of the nighttime BL, shows the 
greatest spread. MYJ, SH, BouLac, and ACM2, 
show the least RMSE, ranging from 1.2 to 1.5 ms–

1. The greatest variation between schemes occurs 
during the nighttime. This is consistent with the 
analyses of temperature and RH errors presented 
earlier. Differences between the various BL/SL 
formulations appear to be greater at nighttime 
rather than daytime. 

 

Fig. 7: Wind speed RMSE for the 7 members. 

To choose the best overall scheme, we assigned 
rankings (from 1 through 7) for each of the 3 
independent variables (T, DPT, and wind) and 
averaged the RMSE rankings for the nowcast, 
extended forecast, and complete forecast periods, 
for temperature, dew point, and wind speed. Since 
the bias calculation potentially includes large 
swings in the error that may be offset by one in the 
other direction, we evaluated the performance of 
the schemes using only the RMSE.  

The results are shown in Table 4. We included 
rankings for T, DPT, and wind speed.  For the 
nowcast period (daytime), the BouLac scheme 
performs best. For the extended forecast 
(nighttime) YSU, BouLac, and QNSE tied for best 
performance. Overall, for the entire forecast 
period, BouLac performs best for our data. The 
ensemble mean RMSE for temperature varies 
between 2.4 and 3.0 K, DPT RMSE ranges from 
2.8 to 3.4 K and for wind velocity is nearly 
constant at approximately 1.5 ms–1. The standard 
deviation of the RMSE is quite small, and is 
indicative the small differences between the 
various PBL schemes we tested. 

4 SUMMARY AND CONCLUSIONS 

We tested 7 PBL/SL parameterization schemes 
using a 9-/3-/1-km triple nest grid configuration 
centered over San Diego, California, under 
quiescent conditions in late winter. There was little 
spread in the RMSE/bias statistics for the 
schemes we tested. The WRF model had its 
greatest difficulty in capturing the transition 
between daytime and nighttime boundary layers 
for our test day. The greatest variation between 
schemes is with the nocturnal BL. For the nowcast 
period, the best overall performer was BouLac, 
followed by MYJ. For the extended forecast 
period, the YSU, BouLac, and QNSE schemes 
were tied for best performance. For the overall 
forecast period (nowcast, extended) BouLac was 
best, followed by QNSE. The standard deviation of 
the ensemble created using the various PBL 
schemes was small despite the fact that the 
schemes we tested were devised using local, 
nonlocal, and hybrid approaches.  

While the SH scheme was developed primarily to 
address the scale awareness problem (Shin and 
Hong, 2013), we did not see an improvement in 
using this scheme with a 1-km grid spacing, in 
particular with the YSU scheme, which shares 
common lineage.  

Independent statistical analysis by Smith et al. 
(2018) is in agreement with our determination of 



the lack of variance between the schemes, and 
attributes only 3%–4% of total model variance to 
the PBL schemes. That calculation involves, at the 
highest level, an extension of a common data 
analytics approach called ANOVA (for analysis of 
variance), which uses a parameter eta (η). 
Bakeman (2005) found that a generalized eta 
squared, ηG, was superior. Eta squared (ηG

2) was 
calculated using the lsr package in R (Navarro 
2015), allowing us to estimate the relative 
contribution to model error (uncertainty) due to the 
BL physics packages. 

Talagrand (Hamill, 2000) diagrams were also 
constructed and show very little dispersion 

between the 7 members. Because we did not 
obtain an optimal flat response in our Talagrand 
plots, but rather a classic “U shaped” distribution 
characteristic of inadequate spread between the 
ensemble members for all but temperature, the 
use of only a physics-based ensemble (in this 
case BL/SL combinations) is inadequate for 
deriving probabilistic information and forecast 
uncertainty. Research looking into the relative 
contributions to model uncertainty due to the other 
physics schemes and initialization data is 
addressed in the DoE approach described by 
Smith et al. (2018). 

 

Table 4: Ranking for RMSE statistics by scheme (1=best, 7=worst) 

Hours Field MEAN STDEV MYNN SH MYJ YSU BouLac QNSE ACM2 

06 through 12 
(nowcast) 

 

Temp 2.43 0.18 7 6 1 5 2 3 4 

DPT 3.38 0.09 5 5 3 4 1 1 7 

WIND 1.49 0.12 4 1 6 1 5 7 1 

COMP   7 5 3 2 1 4 5 

12 through 24 
(extended) 

 

Temp 2.95 0.15 7 3 6 2 3 1 3 

DPT 2.77 0.07 4 7 2 6 2 1 5 

WIND 1.47 0.16 5 1 6 1 4 7 3 

COMP   7 5 6 1 1 1 4 

06 through 24 
(complete) 

 

Temp 2.77 0.13 7 6 4 4 2 1 3 

DPT 2.97 0.07 4 6 3 5 2 1 6 

WIND 1.47 0.14 5 1 6 1 4 7 3 

COMP   7 5 6 3 1 2 4 
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