Modeling hydrodynamic stress limitations on transpiration

Gil Bohrer

Assistant Professor of Ecological Engineering Department of Civil & Environmental & Geodetic Engineering The Ohio State University bohrer.17@osu.edu ; www.ceegs.ohio-state.edu/~bohrer.17/

Ashley Matheny, Julia Thomson, Kyle Maurer, Renato Frasson

Incorporating the hydraulic structure of trees

Plant structure is driven by optimization of its hydrological function

However, current hydrological and landsurface models do not represent structure OR plant hydrology

Finite Elements Tree-Crown Hydrology (FETCH) model

Advantages:

- Accounts for trees' structure
- Physical sense of hydraulics
- 3-D sub-tree-scale solution of fluxes
- Improved representation of fast temporal dynamics
- Ability to forecast the effects of tree growth and structure on transpiration

Bohrer et al. 2005 WRR

1-D Richards equation in Pressure form

- Mass conservation of water in a porous media
- Describes change of Φ (water pressure) in space and time

New "tricks":

- Maximal potential transpiration restricted by stomatal response to water potential in branches
- 3D→1D coordinate conversion
- $C(\Phi)$ derived from empirical cavitation curves $\theta = f(\Phi)$
- *E_{V,max}* based on atmospheric conditions within-above canopy

$$C(\Phi) = \frac{\partial \theta}{\partial \Phi} = p \theta_{sat} \frac{1}{\Phi_0} \left(\frac{\Phi_0 - \Phi}{\Phi_0} \right)^{-(p+1)}$$
$$K(\Phi) = f(A_z) K_{max} e^{-(-\Phi/d)^{c_1}}$$
$$E_V = E_{V,max} \times \exp\left[-\left(\frac{-\Phi^{(n-1)}}{\Phi_\sigma} \right)^{c_3} \right]$$

Daily dynamics from FETCH

Branch (leaf) water potential is resolved sap flow and storage calculated dynamically

Daily dynamics from FETCH

Drought sequence

Hydrodynamic stress is everywhere !

Non-hydrodynamic transpiration models produce typical pattern of error because they do not account for hydrodynamic stress effects in the afternoon

Application for ecological-atmospheric modeling Accounting for canopy-structure effects on hydrological processes

How to get branch-level explicit description of canopy structure?

Airborne LIDAR (example sub-domain, 0.55 x 0.7 km²)

Garrity et al 2012 RSL

Use allometry to translate height-crown size data to DBH

How to get branch-level explicit description of canopy structure?

Decompose the forest to representative size/species DBH bins

Will changes in structure also affect water demand?

Differences between hydrologic-functional types

Acknowledgements The FASET team: Peter Curtis, Brady Hardiman, Chris Vogel, Chris Gough, Luke Nave

The CASSSH team: Valeriy Ivanov, Lingli He (U of M)

Sap-flux measurements: Karina Schafer (Rutgers U)

Eddy flux processing: Matteo Detto (STRI)

Airborne LIDAR – NCALM (UMBS data)

United States Department of Agriculture National Institute of Food and Agriculture

National Science Foundation

DOE National Institute for Climatic Change Research

Ohio Supercomputer Center Empower. Partner. Lead.