

Measuring and Monitoring Leaf Area Index and Foliage Profile Using Three-dimensional Forest **Reconstructions Assembled from Ground-Based Full-Waveform Lidar Scans** Xiaoyuan Yang¹, Tian Yao², Zhan Li³, Crystal Schaaf¹, Alan Strahler³, Zhuosen Wang¹, Feng Zhao⁴, Curtis Woodcock³, David Jupp⁵, Darius Culvenor⁶, and Glenn Newnham⁶, Jenny Lovell⁷

¹Department of Environmental, Earth and Ocean Sciences, University of Massachusetts Boston, Boston, MA ²Remote Sensing Laboratory, Montclair State University, Montclair, NJ ³ Center for Remote Sensing, Department of Geography and Environment, Boston University, Boston, MA ⁴Department of Geographical Sciences, University of Maryland, College Park, MD ⁵CSIRO Marine and Atmospheric Research, Canberra, ACT, Australia ⁶CSIRO Land and Water, Melbourne, VIC, Australia ⁷CSIRO Marine and Atmospheric Research, Hobart, TAS, Australia

***** Overview

Voxelization of 3-D point clouds of scattering events identified by full-waveform, ground-based lidar scans of conifer and broadleaf forests provides a new technique to measure the vertical and horizontal distribution of leaf area and woody biomass in a forest stand. The lidar scanner, the Echidna[®] Validation Instrument (developed by Australia's CSIRO), allows differentiation of trunk and leaf scattering events, which is of interest to both land biogeoscientists who require bulk vegetation biomass measures and to atmospheric biogeoscientists, who require information on surface roughness, photosynthesis, and respiration processes. Comparisons of voxelized 3-D reconstructions through time can be used to document forest change, including both growth and disturbance. The voxelized reconstructions also provide a pathway for calibration and validation of airborne and spaceborne methods of forest structure retrieval.

Site Characteristics

	B3.3 m EVI Scan Locations 3D Forest Reconstruction Area Center Plot UL UR CP	2009	
Sierra Nevada Nation	50 m 100 m	• Harv	ard Forest
		EVI Scan Locations 3D Forest Reconstruction Are NW N NE E W G Center	ea la
	ATTAL A	SW S SE	

	Site ID	Leading dominants	Top canopy height ¹ (m)	Mean DBH (m)	Stem count density ² (ha–1)	Leaf Area Index ³ (m²/m²)	Above- ground biomass ⁴ (t ha–1)
-	23	Jeffery pine	29.2	0.41±0.02	110±29	0.65 ± 0.24	115±64
	301	Red fir	25.3	0.37±0.02	231±64	0.58 ± 0.14	361±60
	305	Red fir	45.2	0.58±0.02	284±40	2.03 ± 0.50	1215±150
-	801	Sequoia, red fir	61.8	0.87±0.09	156±12	2.42 ± 0.47	2664±250
ŀ	Hemlock	Hemlock	22.6	0.24±002	906±71	4.32 ± 0.27	234±7
	EMS Tower	Red maple, red oak	26.4	0.28±0.02	951±69	3.71 ± 0.11	373±36

¹Mean height of 5 tallest trees in the field measurements at each site. ²For standard errors, n = 5 subplots for the Sierra sites ; n = 9 for the New England forest sites. ³From LAI-2000 measurements. ⁴Calculated based on the allometric equations described in Jenkins et al. (2004).

Three-dimensional Forest Reconstruction

Digital Terrain Model & Canopy Height Model

Change in Canopy Height Due to 2008 Ice Storm (Hemlock site)

Voxelization transform the irregular, unorganized cloud of data points in the 3-D forest reconstruction into volumetric datasets

Leaf area index and foliage area volume density

- Assumption
- Leaf area of a voxel
- Foliage area volume density profile
- $LAI = \int_{z=0}^{z_{\text{max}}} f(z) dz = \frac{\sum x', y', z'^{LA(x)}, y'', z''^{LA(x)}}{s}$

Foliage Area Volume Density (Hemlock site)

• $\max[\rho_{app}(r)_w]$ represents a voxel with cross sectional area fully occupied by leaves of branchlets

• $LA(x', y', z') = \frac{1}{G(\theta)} \cdot A \cdot \frac{\rho_{app}(x', y', z')_{w}}{\max[\rho_{app}(r)_{w}]}$

$$\frac{x',y',z')_{z'=dz}}{\sqrt{dz}}$$

Terrestrial (EVI) vs. Airborne (LVIS) Lidar (Hemlock site)