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Fine Particulate Matter (PM, z): Composition, Sources and Sinks
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Effect of Climate Change on PM, - Air Quality

Expected effects of PM, . dependence on
21st-century climate meteorological variables
change
t Temperature (emissions, chemistry) Il
? Relative humidity (chemistry) I
? Precipitation (scavenging) 1

' Stagnation (transport) t
? Mixing depth (transport) 1

= GCM-CTM studies show £0.1-1 ug m-3 effect of climate change on
PM, ; with no consistency even in sign of effect

= Reflects uncertainty of GCMs in simulating regional climate, and
use of single GCM realizations in GCM-CTM studies which is not
sufficient due to complex meteorological dependence



Dominant Meteorological Modes for Daily PM, - Variability

= Principal component analysis (PCA) of 8 meteorological variables
to identify dominant meteorological mode that drives day-to-day PM,

variability by region:

PC(t)=a,T(H)+a,,,.,precip(t)+ oy p,SLP(1) +...

21 Midwest (Jan 2006)
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Transport modes for PM,, ;:

= Eastern US: mid-latitude
cyclone and cold front
passage

= Pacific coast: synoptic-scale
maritime inflow

[Tai et al., 2012]




Dominant Meteorological Modes for Interannual PM, ; Variability

= |dentify dominant meteorological mode for interannual PM, ¢
variability whose mean period T (~5-10 days) is most strongly
correlated with annual mean PM, ;

= Midwest: local dPM, /dT = ~1 yg m-3 d-’

cyclone period T
y per \ r=0.76
LY )

Annual = \\ ° Synoptic
mean /\ /\ / period T
PM

(Mg I‘?]53) o =" M v o (d)

| 2000 2002 2004 2006 2008 2010

Anomaly of annual mean PM, ; and period of dominant
meteorological mode (cyclone passage) for US Midwest

[Tai et al., 2012]



Multi-model Projection of Synoptic Period and PM, .
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[Tai et al., in prep]



Inter-model Variability of Circulation-driven Projection of PM, .
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= Likely increase of ~0.1 pg m= in eastern US due to more
stagnant atmosphere; likely decrease of ~0.3 pg m=> in
Northwest due to more frequent maritime inflows

= Uncertain in other regions [Tai et al., in prep]



Overall Assessment of PM, : Response to Climate Change
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= OQverall climate effect on annual PM, ; unlikely to exceed +0.5 yg m-3

= Effect of fires on daily PM, ; in the West may be more prominent issue



