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Fine Particulate Matter (PM2.5): Composition, Sources and Sinks 
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  GCM-CTM studies show ±0.1-1 µg m-3 effect of climate change on 
PM2.5 with no consistency even in sign of effect 

  Reflects uncertainty of GCMs in simulating regional climate, and 
use of single GCM realizations in GCM-CTM studies which is not 
sufficient due to complex meteorological dependence 
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PC(t) =!TT (t)+! precip precip(t)+!SLPSLP(t)+...

  Principal component analysis (PCA) of 8 meteorological variables 
to identify dominant meteorological mode that drives day-to-day PM2.5 
variability by region: 

r = -0.54 

Dominant Meteorological Modes for Daily PM2.5 Variability 
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Transport modes for PM2.5: 
  Eastern US: mid-latitude 

cyclone and cold front 
passage 

  Pacific coast: synoptic-scale 
maritime inflow 

Jan 28 Jan 30 [Tai et al., 2012] 



Dominant Meteorological Modes for Interannual PM2.5 Variability  

  Identify dominant meteorological mode for interannual PM2.5 
variability whose mean period T (~5-10 days) is most strongly 
correlated with annual mean PM2.5 

  Midwest: local dPM2.5/dΤ = ~1 µg m-3 d-1  

Anomaly of annual mean PM2.5 and period of dominant 
meteorological mode (cyclone passage) for US Midwest 
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Multi-model Projection of Synoptic Period and PM2.5 -1.0
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[Tai et al., in prep] 

Climatological 
observation of 
dPM2.5/dΤ   
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  Likely increase of ~0.1 µg m-3 in eastern US due to more 
stagnant atmosphere; likely decrease of ~0.3 µg m-3 in 
Northwest due to more frequent maritime inflows 

  Uncertain in other regions 

Inter-model Variability of Circulation-driven Projection of PM2.5 

2000-2050 
change in 

annual 
mean PM2.5 

(µg m-3) 

-1
.0

-0
.5

0.
0

0.
5

weighted average
95% confidence interval

[Tai et al., in prep] 



  Overall climate effect on annual PM2.5 unlikely to exceed ±0.5 µg m-3 

  Effect of fires on daily PM2.5 in the West may be more prominent issue 

Overall Assessment of PM2.5 Response to Climate Change 
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