Impact of Climate Change on Fine Particulate Matter (PM_{2,5}) Air Quality Inferred from a Multi-model Analysis of **Meteorological Modes**

Amos P. K. Tai (Collaborators: L.J. Mickley, D.J. Jacob, E.M. Leibensperger, L. Zhang, J.A. Fisher, H.O.T. Pye) **AMS Conference on Atmospheric Biogeosciences** Jun 1, 2012

Harvard School of Engineering and Applied Sciences

Fine Particulate Matter (PM_{2.5}): Composition, Sources and Sinks

Effect of Climate Change on PM_{2.5} Air Quality

?

?

PM_{2.5} dependence on meteorological variables

- **?** Relative humidity (chemistry)
 - Precipitation (scavenging)
 - Stagnation (transport)
 - Mixing depth (transport)
- GCM-CTM studies show ±0.1-1 µg m⁻³ effect of climate change on PM_{2.5} with no consistency even in sign of effect
- Reflects uncertainty of GCMs in simulating regional climate, and use of single GCM realizations in GCM-CTM studies which is not sufficient due to complex meteorological dependence

Dominant Meteorological Modes for Daily PM_{2.5} Variability

• Principal component analysis (PCA) of 8 meteorological variables to identify dominant meteorological mode that drives day-to-day $PM_{2.5}$ variability by region: $PC(t) = \alpha_T T(t) + \alpha_{precip} precip(t) + \alpha_{SLP} SLP(t) + ...$

Jan 28

Jan 30

Transport modes for PM_{2.5}:

- Eastern US: mid-latitude cyclone and cold front passage
- Pacific coast: synoptic-scale maritime inflow

[Tai et al., 2012]

Dominant Meteorological Modes for Interannual PM_{2.5} Variability

 Identify dominant meteorological mode for interannual PM_{2.5} variability whose mean period T (~5-10 days) is most strongly correlated with annual mean PM_{2.5}

• Midwest: local $dPM_{2.5}/dT = ~1 \ \mu g \ m^{-3} \ d^{-1}$

Anomaly of annual mean PM_{2.5} and period of dominant meteorological mode (cyclone passage) for US Midwest

[Tai et al., 2012]

Multiplication of Synoptic Period and PM_{2.5}

Climatological observation of $dPM_{2.5}/dT$

Weighted average 2000-2050 change in T (15 IPCC AR4 GCMs)

Resulting 2000-2050 change in PM_{2.5}

[Tai et al., in prep]

Inter-model Variability of Circulation-driven Projection of PM_{2.5}

- Likely increase of ~0.1 µg m⁻³ in eastern US due to more stagnant atmosphere; likely decrease of ~0.3 µg m⁻³ in Northwest due to more frequent maritime inflows
- Uncertain in other regions

[Tai et al., in prep]

Overall Assessment of PM_{2.5} Response to Climate Change

- Overall climate effect on annual PM_{2.5} unlikely to exceed ±0.5 µg m⁻³
- Effect of fires on daily PM_{2.5} in the West may be more prominent issue