The National Ecological Observatory Network (NEON) is a continental-scale research platform with a projected operation of 30 years. NEON’s purpose is to provide high quality data products that will facilitate discovering and understanding the impacts of climate change, land-use change, and invasive species on ecology. The eddy-covariance (EC) technique will be used to continuously monitor the exchange of sensible heat, water vapor, CO₂, and other scalars between ecosystems and the atmosphere at all 60 NEON research sites.

Four stages of scalable tests, resulting in Quality metrics (QM)

Stage 1 “Temporally explicit flux QA/QC”
- Stationarity → QMSTA
- Developed turbulence → QMTPB
- Comparison to reference spectrum → QMREF
- Comparison to reference cospectrum → QMCTS
- Random error → QMERS
- Systematic error → QMERS
- Energy balance residual → QMRES

Stage 2 “Spatially explicit flux QA/QC”
- Footprint modeling considering 3d dispersion
- Superimpose footprints over high-resolution remote sensing data from NEON Airborne Observation Platform
- Evaluation of target land cover in footprint

Stage 3 “Complex terrain”
- Detailed case studies for selected sites
- Analysis of Wavelet and Hilbert spectra for intermittent turbulence, coherent structures and gravity waves
- Large eddy simulation to study advection, drainage flow, non-propagating eddies, and more realistic footprints

Stage 4 “Flux un-mixing in heterogeneous terrain”
- High temporal resolution of fluxes from Wavelet analysis and empirical mode decomposition
- Footprint weights for individual land covers
- Inversion of land cover specific fluxes using, e.g., support vector machines → QMFLUX

Why flux QA/QC?

All data streams collected by NEON pass through an automated quality control (see companion poster No. 49). However, the EC method makes use of additional assumptions and simplifications, many of which are related to the mass balance equation:

\[
F = \sum \int \left(\int \left(\int \left(\int u_x \, \mathrm{d}y \, \mathrm{d}z \right) \, \mathrm{d}t \right) \, \mathrm{d}x \right)
\]

with the total flux \(F\) into or out of an ecosystem, a scalar quantity \(s\) such as \(H_2O\) or \(CO_2\) mixing ratios, along-, cross-, and vertical wind speeds \(u, v, w\) and with respect to the Cartesian coordinates \(x, y, z\); \(t\) is time, and \(z\) is the measurement height.

Testing these assumptions and simplifications in addition to an automated quality control is indispensable to ensure high data quality as well as representativeness of the EC flux data products for the target ecosystems.

Example I – Wavelet analysis (aircraft data*)

- Parseval's theorem: covariance of a signal can be studied equivalently in time- and frequency domain
- Integration over all frequencies of each individual flux measurement enables high temporal discretization

Example II – Footprint analysis (aircraft data*)

- Superimposing footprints over land cover maps
- Fractional land cover contribution to each individual flux measurement

Example III – Flux un-mixing

Inferring the characteristic fluxes of individual land covers, \(F_n\), e.g. through linear numerical inversion of:

- Temporally high resolved flux measurements \(F_n\), from wavelet analysis or empirical mode decomposition
- Fractional contribution of \(F_n\) to \(F\), \(C_{nm}\), from footprint analysis

\[
C_{11}F_{11} + C_{12}F_{12} + \ldots + C_{n1}F_{n1} = F_1
\]

\[
C_{11}F_{11} + C_{12}F_{12} + \ldots + C_{m1}F_{m1} = F_m
\]

\[
C_{11}F_{11} + C_{12}F_{12} + \ldots + C_{n1}F_{n1} + \ldots = F_n
\]

with the number of flux samples \(N\), and the number of individual land covers \(M\).

Background

The National Ecological Observatory Network (NEON) is a continental-scale research platform with a projected operation of 30 years. NEON’s purpose is to provide high quality data products that will facilitate discovering and understanding the impacts of climate change, land-use change, and invasive species on ecology. The eddy-covariance (EC) technique will be used to continuously monitor the exchange of sensible heat, water vapor, CO₂, and other scalars between ecosystems and the atmosphere at all 60 NEON research sites.

Objectives

- Enable the transition of EC measurements from principal-investigator-based into observatory-based operations
- Place QA/QC approaches into a production framework
- Ensure consistent quality rating over the range of climates and ecosystems across an entire continent
- Advance established tests and data flows (e.g., AmeriFlux, CarboEurope) to new state-of-the-art functionality
- Respond to requests from the research community
- Provide research community with open source algorithms

*Courtesy of MAGIM - Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate (www.magim.net). The research was funded by the China Scholarship Council and the European Union under the Science and Technology Fellowship China is acknowledged.

© National Ecological Observatory Network, Inc. ALL RIGHTS RESERVED. The National Ecological Observatory Network is a project operated by the National Science Foundation and managed under cooperative agreement by NEON, Inc. This material is based upon work supported by the National Science Foundation under the following grants: EF-1029808, EF-1138160, EF-1150319 and DBI-0752017. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.*