Continuous year-long measurements of atmospheric HONO and NO₂ above a New England forest

<u>Ben Lee¹</u>, Bill Munger¹, Ezra Wood^{2,3}, Mark Zahniser³ and Steve Wofsy¹

- ¹ Harvard University
- ² Umass Amherst
- ³ Aerodyne Research, Inc.

AMS Conference on Atmospheric Biogeosciences May 29, 2012

R1. OH + NO + M \rightarrow HONO + M R2. HONO + OH \rightarrow H₂O + NO₂ R3. HONO + hv \rightarrow OH + NO

R1. OH + NO + M \rightarrow HONO + M R2. HONO + OH \rightarrow H₂O + NO₂ R3. HONO + hv \rightarrow OH + NO

 $\frac{d[HONO]}{dt} = k_1[OH][NO] - k_2[HONO][OH] - J_{HONO}[HONO]$

R1. OH + NO + M \rightarrow HONO + M R2. HONO + OH \rightarrow H₂O + NO₂ R3. HONO + hv \rightarrow OH + NO

 $\frac{d[HONO]}{dt} = k_1[OH][NO] - k_2[HONO][OH] - J_{HONO}[HONO]$

 $[HONO]_{PSS} = \frac{k_1[OH][NO]}{J_{HONO} + k_2[OH]}$

Pinnacle State Park, NY (Jul 1998) R1. OH + NO + M \rightarrow HONO + M 100 R2. HONO + OH \rightarrow H₂O + NO₂ R3. HONO + hv \rightarrow OH + NO 80 Observed HONO, pptv 60 699*99999*9994 $\frac{d[HONO]}{dt} = k_1[OH][NO] - k_2[HONO][OH] - J_{HONO}[HONO]$ 40 PSS 20 $[HONO]_{PSS} = \frac{k_1[OH][NO]}{J_{HONO} + k_2[OH]}$ 0 12 16 Time, LT

[Zhou et al., 2002]

Implications

• "Missing" HONO source accounts for 20-40% of $P(HO_x)$

 \bullet Pathway to recycle deposited NO_{x} back into atmosphere in reactive form

Questions

• What is the contribution of HONO production on atmospheric NO_x and HO_x budgets over a rural forest?

• Which environmental variables are responsible?

Goals for instrument

- Direct sampling (no wet chemistry)
- Selectivity (spectroscopic identification)
- Sensitivity (pristine environments & eddy covariance fluxes)
- Long-term deployment (cryogen-free)

<u>Tunable Infrared Laser Differential Absorption Spectroscopy</u>

<u>Tunable</u> Infrared Laser <u>Differential</u> <u>Absorption</u> <u>Spectroscopy</u>

Sample out

Sample in

A) QC laser for HONO (1660 cm⁻¹)
B) QC laser for NO₂ (1604 cm⁻¹)
C) 210-m path-length multi-pass astigmatic cell
D) Detector

1-hr avg. spectra (6:30-7:30 am on 1/18/2011)

Spectra provide unambiguous identification of HONO

Sampling system

• Routine in-field tests on sampling system to ensure artifact-free measurements

• No particle filters

Sampling system

• Routine in-field tests on sampling system to ensure artifact-free measurements

• No particle filters

Quick glance by season

Winter

Spring

Summer

Autumn

Harvard Forest (Dec '10 to Nov '11)

Comparison to previous measurements: mixing ratio

Comparison to previous measurements: fluxes

Comparison to previous measurements: fluxes

Previous rural studies infer daytime HONO flux ranging from **3.6×10⁻⁶** to **59×10⁻⁶ mol m⁻² h⁻¹**

[Ren et al., 2010; Acker et al., 2006; Kleffmann et al., 2005; Zhou et al., 2002]

Daytime result

Daytime HONO production at Harvard Forest <u>contributes negligibly</u> to atmospheric HO_x and NO_x budget over all seasons