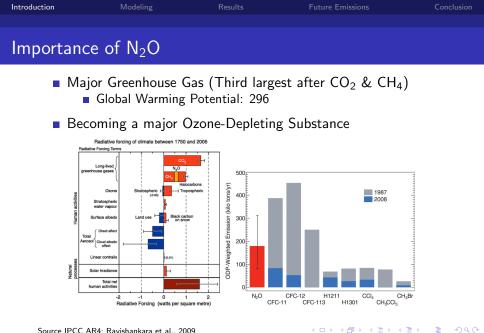
	Modeling	Results	Future Emissions	Conclusion
Glo	obal Soil N_2O	Emissions	in a Future Clima	ate

Eri Saikawa, C. Adam Schlosser, Xiang Gao, and Ron Prinn

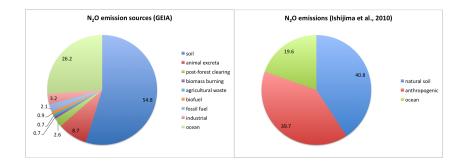

Massachusetts Institute of Technology

May 31, 2012

2

MIT

Eri Saikawa, C. Adam Schlosser, Xiang Gao, and Ron Prinn

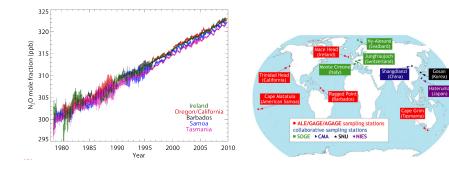

Eri Saikawa, C. Adam Schlosser, Xiang Gao, and Ron Prinn

Global Soil N2O Emissions in a Future Climate

Introduction	Modeling	Results	Future Emissions	Conclusion

Source and Magnitude of N_2O Emissions

- Large Natural Sources (Soil + Ocean)
- Global Total: 15-20 TgN₂O-N year⁻¹



Eri Saikawa, C. Adam Schlosser, Xiang Gao, and Ron Prinn Global Soil N_2O Emissions in a Future Climate

3

Introduction	Modeling		Future Emissions	Conclusion
N ₂ O Mixii	ng Ratio Inci	reasing		
2 70	ppb in 1850, 28	0ppb in 1905,	300ppb in mid-1970s.	

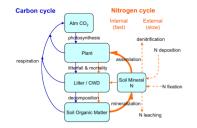
• The current mixing ratio is over 320ppb.

MIT

Source: Advanced Global Atmospheric Gases Experiment

Eri Saikawa, C. Adam Schlosser, Xiang Gao, and Ron Prinn

Introduction	Modeling	Results	Future Emissions	Conclusion
Research	Questions			

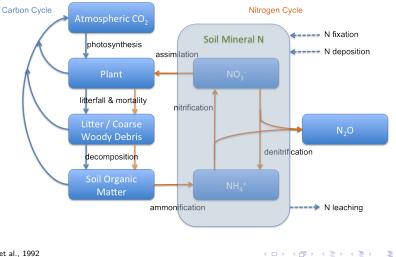

- How much does natural soil contribute to global N₂O emissions?
- How much natural soil emissions do we see in a future climate?

э

	Modeling	Results	Future Emissions	Conclusion
Drocos M	Iodeling of N			

ົ

- Community Land Model (CLM) v3.5 with prognostic Carbon and Nitrogen
- CLM-CN model represents land terrestrial water, carbon and nitrogen balances, and it is nominally run at an hourly time scale.
- $\blacksquare~1.9^\circ$ latitude and 2.5° longitude horizontal resolution



э

<ロ> <同> <同> < 回> < 回>

Modeling	Results	Future Emissions	Conclusion

DeNitrification-DeComposition (DNDC) Model in CLMCN

Li et al., 1992

Eri Saikawa, C. Adam Schlosser, Xiang Gao, and Ron Prinn

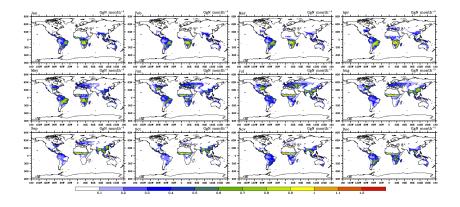
Global Soil N2O Emissions in a Future Climate

	Modeling	Results	Future Emissions	Conclusion
CLMCN-N ₂ C)			

- Equilibrium run, followed up by a transient run.
- Analyzed years 1975-2008.
- Nitrogen deposition is taken from Community Atmosphere Model (CAM) for the year 2000.
- 4 forcing datasets are used:
 - NCEP Corrected by CRU (NCC)
 - Climate Analysis Section (CAS)
 - Global Offline Land-Surface Dataset (GOLD)
 - Global Meteorological Forcing Dataset (GMF)

<ロ> (日) (日) (日) (日) (日)

Results: N₂O Emissions Estimated from CLMCN-N₂O

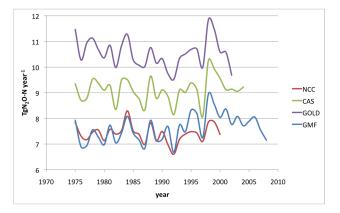

$(CLMCN-N_2O)$

Eri Saikawa, C. Adam Schlosser, Xiang Gao, and Ron Prinn

Global Soil N₂O Emissions in a Future Climate

<ロ> <四> <四> <日> <日> <日</p>

Results: Seasonality in 2000



Eri Saikawa, C. Adam Schlosser, Xiang Gao, and Ron Prinn

Global Soil N₂O Emissions in a Future Climate

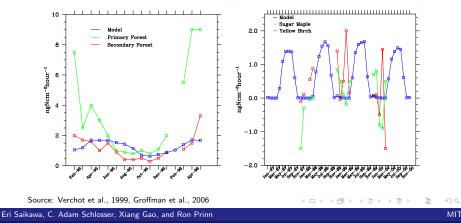
Introduction Modeling Results Future Emissions Conclusion
Results: Inter-annual Variability

4 different forcing data sets produce similar trends.

-≣⇒

	Modeling	Results	Future Emissions	Conclusion
Comparison	with othe	r models		

Global Soil N₂O Emissions (TgN₂O-N year⁻¹)

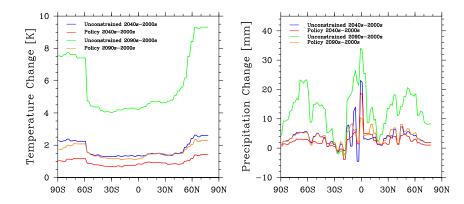

- CLMCN-N₂O: 6.6-11.9
- NASA-CASA: 6.18
- GEIA: 7.53
- O-CN: 10.83 (including agriculture)
 - Agricultural soil: approximately 2.5 TgN₂O-N year⁻¹

э

・ロト ・回ト ・ヨト・

	Modeling	Results	Future Emissions	Conclusion
Model-Obs C	Comparison: S	Soil N ₂ O en	nissions	

 Model reproduces the soil N₂O emissions well in the tropics (Fazenda Vitoriá), but cannot reproduce winter emissions in the upper latitudinal region (White Mountain National Park).

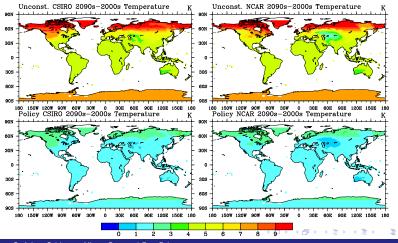

	Modeling	Results	Future Emissions	Conclusion
_				
 Future So 	oil N ₂ O Emiss	ions		

- How much emissions do we expect in the future?
- Would emissions change depending on the climate?

2

э

Under 2 different scenarios in the future....

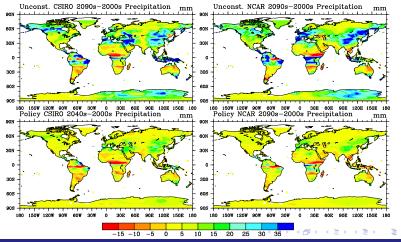


Eri Saikawa, C. Adam Schlosser, Xiang Gao, and Ron Prinn

Modeling	Results	Future Emissions	Conclusion

Created 2 other forcing patterns in the future....

Temperature patterns

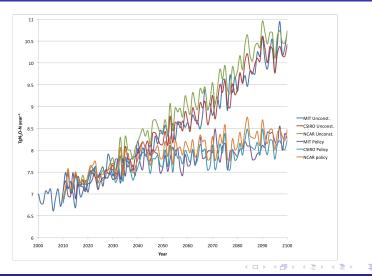


Eri Saikawa, C. Adam Schlosser, Xiang Gao, and Ron Prinn

Modeling	Results	Future Emissions	Conclusion

Created 2 other forcing patterns in the future....

Precipitation patterns



Eri Saikawa, C. Adam Schlosser, Xiang Gao, and Ron Prinn

Introduction

Results

Natural soil N₂O emissions in the future

Eri Saikawa, C. Adam Schlosser, Xiang Gao, and Ron Prinn

Global Soil N₂O Emissions in a Future Climate

	Modeling	Results	Future Emissions	Conclusion
Conclusion				

- We inserted an N₂O module into CLM-CNv3.5 and quantified natural soil N₂O emissions.
- Process modeling results show clear seasonality and El Niño years have low natural soil N₂O emissions.
- Our model results indicate that there will be significant increase in natural soil N₂O emissions in the future without policy to regulate GHGs.

• • • • • • • • • • • • •