The Link between Coherent Structures and Particle Transport in Canopy Flows

Brian N. Bailey1, Rob Stoll1, Eric R. Pardyjak1
Walter Mahaffee2

\texttt{bbailey@eng.utah.edu}

1Department of Mechanical Engineering
University of Utah, Salt Lake City, UT, USA
2USDA ARS
Corvallis, OR, USA

May 30, 2012
General characteristics of turbulence in plant canopies

1. Turbulence is highly intermittent
2. Large turbulent intensities
3. Turbulence seems highly organized
Hypothesis:

Raupach (1996)

Flow near the canopy is analogous to a plane mixing layer.
Coherent Structure Detection

Challenges:

For complex, 3-D turbulent flows:

- The definition of a coherent structure itself is vague
 - Need to define a trigger or indicator
- Coherent structures generally occur at random locations and have random strengths
 - Need composite averages
 - May require a (sometimes arbitrary) threshold
Challenges:

For complex, 3-D turbulent flows:

- The definition of a coherent structure itself is vague
 - Need to define a trigger or indicator

- Coherent structures generally occur at random locations and have random strengths
 - Need composite averages
 - May require a (sometimes arbitrary) threshold
Coherent Structure Detection Methods: EOF & POD

- **Gao et al (1989) and others**: Temperature ramps/microfronts
- **Finnigan & Shaw (2000)**: Empirical orthogonal function (EOF) analysis
- **Huang et al (2009)**: Proper orthogonal decomposition (POD)
- **Finnigan et al (2009)**: Conditional averaging based on pressure spikes
Finnigan et al (2009) detection method

The Underlying Hypothesis: “sufficiently large” pressure spikes at the canopy top are an indication of the presence of coherent structures.
Coherent Structure Detection Methods: Composite average based on pressure spikes

Figure from Finnigan et al (2009; JFM). Vectors of $\overrightarrow{V} = (\tilde{u}', \tilde{w}')$ in the $x-z$ plane.

- **Sweep**
- **Ejection**

Q2

Q4
Coherent Structure Detection Methods: Composite average based on pressure spikes

Figure from Finnigan et al (2009; JFM). Vectors of \(\overline{V} = (\overline{u}', \overline{w}') \) in the \(x - z \) plane.

Canopy Structures and Particle Transport
Bailey et al
Canopy Turbulence
Structure Detection
LES Results
New Method
Conclusions

SWEEPS

\[\text{sweep} \]

\[\text{Q4} \]

ejection

\[\text{Q2} \]
Large-Eddy Simulations

- Horizontally homogeneous canopy (neutral stability)
 - \(F_i = C_d \alpha \tilde{u}_i \tilde{V} \)
- Wide range of canopy densities: \(1.0 > LAI > 0.077 \), \(C_d = 0.5 \)
 - 8 different densities
- Numerics
 - horizontally periodic domain
 - pseudospectral differencing in horizontal, 2\(^{nd}\) order FDS in vertical
 - \(192 \times 192 \times 160 \) points, \(24h \times 24h \times 8h \) domain
 - dynamic scale-dependent Lagrangian SGS model
- Code details can be found in Stoll and Portè-Agel (2006; WRR)
Indirect Coherent Structure Identification: integral length scales

Integral Length Scales

- L_w Integral length scales at h determined by integrating w autocorrelation function ($\Lambda_x = 2\pi L_w$)

- Comparison with:
 - Dupont and Brunet (2008; AFM) LES [Δ]
 - Huang et al (2009; BLM) LES [\square]
 - Current LES [\circ]

![Graph showing comparison of integral length scales with different symbols representing dense and sparse conditions.](image-url)
Turbulent length scale at the canopy top resembles a pure boundary-layer as the canopy becomes sparse.
Indirect Coherent Structure Identification: quadrant-hole analysis

As the canopy becomes sparse:
- sweeps dominate throughout canopy
- profiles still resembles that of a canopy (sweeps dominant)
vertical velocity skewness

As the canopy becomes sparse:

- skewness decreases within the canopy
- height of the profile peak decreases
- skewness profile still resembles that of a canopy
Coherent Structure Detection:
pressure perturbation method

Coherent Structures
- similar structures regardless of density
- structures tend to penetrate deeper in the sparser canopies
Coherent Structure Detection: pressure perturbation method

Coherent Structures

- similar structures regardless of density
- structures tend to penetrate deeper in the sparser canopies
Particle-Based Coherent Structure Detection Method

General Methodology

- Use *Lagrangian* particle dispersion information as a criteria for composite averaging *Eulerian* velocity fields.

- Velocity fields and particle trajectories obtained from large-eddy simulation (LES) data.

The Underlying Hypothesis:

- **IF:** Particle transport to/from the canopy is dominated by coherent structures,

- **Particle ejection/re-entry from/to the canopy can be used as an indicator for coherent structures**
1. Control surface at $z = h$ (canopy top)
Eulerian/Lagrangian Detection Method

1. Control surface at $z = h$ (canopy top)
2. Trigger when particles cross surface
Eulerian/Lagrangian Detection Method

1. Control surface at $z = h$ (canopy top)
2. Trigger when particles cross surface
3. 3-D fields of fluctuating velocity extracted, centered at ejection/re-entry point
Eulerian/Lagrangian Detection Method

1. Control surface at $z = h$ (canopy top)
2. Trigger when particles cross surface
3. 3-D fields of fluctuating velocity extracted, centered at ejection/re-entry point
Eulerian/Lagrangian Detection Method

1. Control surface at \(z = h \) (canopy top)
2. Trigger when particles cross surface
3. 3-D fields of fluctuating velocity extracted, centered at ejection/re-entry point
4. Extracted 3-D fields composite averaged (ejections and re-entries averaged separately)
Dispersion Simulation Details

- 250,000 particles released continuously from 5 heights within the canopy
 - Passive tracers (i.e., no inertia, no deposition)
- Trajectories tracked in a Lagrangian sense $dx_i = u_i dt$
- SGS particle motions modeled following Weil et al (2004; JAS)
Eulerian/Lagrangian Detection Method

Canopy Structures and Particle Transport

Bailey et al

Canopy Turbulence

Structure Detection

LES Results

New Method

Conclusions

SWEEPS

EJECTIONS

release height

z/h vs r_x/h

$z_r/h = 1.0$

$z_r/H = 1.0$

$z_r/h = 0.8$

$z_r/H = 0.8$

$z_r/h = 0.6$

$z_r/H = 0.6$

$z_r/h = 0.4$

$z_r/H = 0.4$

$z_r/h = 0.2$

$z_r/H = 0.2$
Structure Superposition: Animation
Eulerian/Lagrangian Detection Method

Finnigan et al (2009; JFM) Structures

Particle-Based Detection Method
Eulerian/Lagrangian Detection Method

Key Features
Same basic structures at all release heights
Canopy Structures and Particle Transport

Bailey et al.

Eulerian/Lagrangian Detection Method

Key Features

- Ejection structure strength decreases with height
Eulerian/Lagrangian Detection Method

Sweeps structure strength constant with height
Conclusions

- Integral length scales (@ $z = h$) are not necessarily indicative of canopy structures.

- Other turbulence statistics indicate that relatively sparse canopies still behave like a canopy layer.

- Mixing-layer-like structures appear important for particle transport to/from the canopy.
Acknowledgments

University of Utah Center for High Performance Computing