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ABSTRACT 
 
Making available regional estimates of daily 
evapotranspiration in water-scarce and climatic vulnerable 
regions is critical for improving agricultural and 
hydrological information as well as our understanding of 
land surface-atmosphere interactions.  The aim of this 
study is to provide an operational algorithm for the Sahel 
relying on satellite products at 1-4 km spatial resolution 
without field calibration. An evapotranspiration model 
based on the Priestley-Taylor equation reduced according 
to multiple stresses based on Fisher´s model was evaluated 
in a savanna site in the Sahel (Mali) introducing a new 
formulation for the soil moisture constraint. The model 
was successful to estimate daily evapotranspiration at the 
field level, with a better performance when using a soil 
moisture constraint based on a Thermal Inertia index 
(r2=0.83; MAE=19.2 Wm-2) than on an atmospheric water 
deficit index.  
When up-scaling the model from field to satellite level, the 
decrease in accuracy was comparable to the results from a 
more complex SVAT model, with a better performance 
again of the Apparent Thermal Inertia index especially 
when calculated from MODIS rather than from SEVIRI 
data (r2= 0.69; MAE=13.48 Wm-2). The global MODIS 8-
day evapotranspiration product (MOD16) was also 
evaluated at the site and failed to capture the dynamics of 
evapotranspiration in this Sahelian savanna. 
 
1. INTRODUCTION 
 
Evapotranspiration (or latent heat flux expressed in energy 
terms, E) represents 90% of the annual precipitation in 
water-limited regions which cover 40% of the Earth’s 
surface (Glenn et al. 2007). The Sahel is located in a 
transitional climate region and is thus expected to be 
extremely sensitive to climate change ((Mougin et al. 
2009a)). Improving estimates of temporal and spatial 
variations of E is crucial for understanding land surface-
atmosphere interactions and to improve hydrological and 
agricultural management (Yuan et al. 2010). 
E can be estimated at regional scales using remote 
sensing data. Some models rely on the Penman-Monteith 
(PM) combination equation and E can be partitioned into 
soil and vegetation components (Leuning et al. 2008).  
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With this approach, the challenge is to characterize the 
spatial and temporal variation in surface conductances 
(Zhang et al. 2010).  
A simple way to estimate surface conductances is to use 
prescribed sets of parameters based on biome-type maps 
(Zhang et al. 2010). Other approaches perform 
optimization with field data but can lead to a lack of 
estimates over vast regions of the globe, such as the Sahel, 
due to the scarcity of field measurements (Yuan et al. 
2010). 
(Priestley and Taylor 1972) simplified the Penman-
Monteith equation (PT) for equilibrium evapotranspiration 
over large regions by replacing the surface and 
aerodynamic resistance terms with an empirical multiplier 
PT (Zhang et al. 2009).  The PT equation is theoretically 
less accurate than PM although uncertainties in parameter 
estimation using PM can results in higher errors. (Fisher et 
al. 2008) proposed a model based on PT to estimate 
monthly actual E. The authors used biophysical 
constraints to reduce E from a maximum potential value, 
Ep, in response to multiple stresses.  
PM and PT satellite-based approaches have taken 
advantage of optical remote sensing data to estimate 
vegetation properties. However, thermal information has 
been incorporated in only few studies using coarse (0.25º) 
microwave AMSR-E data (Miralles et al. 2011) even 
though formulations using longwave infrared Ts could 
help to track changes in surface conductance  (Berni et al. 
2009); (Boegh et al. 2002), soil evaporation (Qiu et al. 
2006), surface water deficit (Boulet et al., 2007; Moran et 
al., 1994) or soil water content (Gillies & Carlson, 1995; 
(Sandholt et al. 2002); Nishida et al., 2003) at spatial 
resolutions of 1-3 km. In relation to soil moisture, the early 
work of  (Price 1977)  and  (Cracknell and Xue 1996) for  
mapping soil thermal inertia is now being revisited for soil 
moisture mapping   (Cai et al. 2007; Sobrino et al. 1998; 
Verstraeten et al. 2006).   
The general aim of this work is to develop an operational 
monitoring system for actual evapotranspiration in the 
Sahel using solely satellite and reanalyses data.  We 
adapted a daily version of the two-source Fisher´s model 
with minimum requirements of climatic inputs, no field-
calibration requirements and spatial resolution of 1-4 km. 
Fisher-daily, was evaluated at the point (flux site) level in 
a savanna site in the Sahel (Mali). 
The specific objectives were: 
 Evaluate two soil moisture parameterizations: an 

Apparent Thermal Inertia index and an atmospheric 
water deficit index.  



 Evaluate the performance of MODIS vs. SEVIRI as 
inputs for the Apparent Thermal Inertia Index 

 Compare satellite model outputs with the 
performance of a global satellite LE product 
(MOD16A2) 

 
 
2. DATA 
 
2.1. Study site and Field data 
 
The Agoufou site is an open woody savanna located at 
15.34°N, 1.48°W in the Sahel (Mali). It is homogeneous 
over several kilometers, with trees representing less than 
5% of vegetation cover. A comprehensive description of 
the site is provided by (Mougin et al. 2009b). The region 
experiences a single rainy season with most precipitation 
falling between late June and mid September followed by 
a long dry season of around 8 months (Figure 1). 
In-situ data for the 2007 growing season were provided by 
the African Monsoon Multidisciplinary Analyses 
(AMMA) project. Sensible heat flux was measured with 
sonic anemometers (CSAT) measuring the three vector 
components of the wind at 20 Hz. Latent heat fluxes were 
measured with the eddy–covariance system (Campbell 
CR3000 and CSAT3–LiCor7500, Campbell Scientific Inc. 
Logan, UT, USA and Li–Cor Inc., Lincoln, NE, USA). 
The four components of the net radiation were measured 
with a CNR1 (Kipp and Zonen CNR1, Delft, Holland).  
Measurement height for the flux sensors are 2.2 m. Soil 
heat fluxes were computed from soil temperature 
measurements. See (Timouk et al. 2009) for more details. 
Wind speed and direction (Vector A100R), land surface 
temperature (Everest 4000.4zl), air temperature and 
humidity (HMP 45C, Vaisala) and precipitation (Delta T, 
RG1) were also measured. Time domain reflectometry 
sensors (CampbellCS616, Campbell Scientific INC., USA) 
measured volumetric Soil Water Content at several depths 
with the shallower probe, the one used in this work, 
located at 5 cm. 
  

 
Figure 1: Study site in the Sahel (Agoufou, Mali) 
(15.34°N, 1.48°W), an open woody savanna instrumented 
within the Monsoon Multidisciplinary Analyses (AMMA) 
project.  

The fraction of vegetation cover is 50%, with a maximum 
average height of 0.4 m for the herbaceous cover. A period 
starting prior and finishing after the rains was evaluated 
(DOY 170 to 315). No gap filling has been performed. 
Gaps in flux data are present notably in late July to early 
August. 
 
2.2. Satellite and climatic data 

Satellite data acquired from the MODIS sensor 
included: LAI and fPAR from combined product from Terra 
and Acqua platforms (MCD15A3) consisting of 4-day 
composites of 1 km pixel. The LAI and fPAR were assumed 
to be constant within the 4-day compositing period.  Day 
and night LST (Lands Surface Temperature) and 
emissivity at 1 km were acquired from Terra (MOD11A1). 
Daily surface reflectance from Terra (MOD09GA) at 1 km 
was acquired to estimate albedo using a linear combination 
of spectral bands (Liang et al., 2001). 
Land Surface Temperature (LST) and broadband surface 
albedo () products were developed by the Satellite 
Application Facility for Land Surface Analysis (Land-
SAF) with data from the Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) radiometer, onboard of the 
MSG (Meteosat Second Generation). The MSG-SEVIRI 
sensor includes 12 separate channels and 15 min temporal 
resolution. As for any geostationary satellite the trade-off 
is the low spatial resolution of 4.8 km at nadir (spatial 
sampling is 3 km) and large view angles (Schmetz et al. 
2002). The LST algorithm is based on a generalized split 
window adapted to SEVIRI data (Trigo et al. 2008). The 
albedo product is based on shortwave channels at 0.6, 0.8 
and 1.6 µm. It has an effective temporal scale of 5 days 
and updated on a daily basis (Geiger et al. 2008).  
Incoming solar radiation, Relative Humidity (RH) and 
minimum, maximum and mean air temperature (Tair) were 
obtained from the NASA-power database from the 
Agroclimatology archive of 1º spatial resolution 
(http://power.larc.nasa.gov). For the year 2007 the solar 
parameters were taken from the NASA/GEWEX Surface 
Radiation Budget (GEWEX SRB 3.0 - 
http://eosweb.larc.nasa.gov/PRODOCS/srb/table_srb.html) 
project and the meteorological parameters are from 
NASA’s Global Model and Assimilation Office (GMAO - 
http://gmao.gsfc.nasa.gov), Goddard Earth Observing 
System model version 4 (GEOS-4). To obtain the air 
temperature at the time of satellite overpass a sinusoidal 
function of day length, latitude and mean, minimum and 
maximum temperatures was used (Chapter 2, Campbell & 
Norman, 1998). 



 
3. METHODOLOGY 
 
3.1. Fisher-Daily Model Description  
 
The daily model proposed here (hereafter Fisher-daily) is a 
modified version of the algorithm described in (Fisher et 
al. 2008) E is partitioned into canopy transpiration (Ec) 
and soil evaporation (Es) (equation 1). 
Actual E is calculated based on potential 
evapotranspiration of  soil (Eps) and canopy (Epc) which 
are reduced from their potential level using different 
constraints  (multipliers) based on plant physiological 
status and soil moisture availability (Fisher et al. 2008). 
Ep was calculated using (Priestley and Taylor 1972)  
equation. 
 

sc EEE    (equation 1) 

 
Three plant physiological constraints were considered to 
regulate evapotranspiration: green canopy fraction (fg), a 
plant temperature constraint (fT) and a plant moisture 
constraint (fM) (equation 2).  
 

cMTgc EpfffE    (equation 2) 

 
All the equations and variables are described in Table 1. 
The soil evaporation component was constrained by a soil 
moisture limitation, fSM  (equation 3).  


sSMs EpfE    (equation 3) 

 
In this work, we calculated three different estimates of fSM 
(see Table 1).The first is based on field measurements of 
volumetric soil water content (SWC) (fSM-SWC), where SWC 
was rescaled between a minimum (SWCmin) and a 
maximum value (SWCMax) (Fisher et al. 2008). In our case, 
SWCmin was estimated as the minimum value of the dry 
season and SWCMax as the SWC 24 hours after a strong 
rainfall event, which can be considered as an estimate of 
the field capacity. If SWC > SWCMax then fSM- SWC =1.  
The second approach to estimate fSM was the original 
Fisher’s model formulation based on the link between 
atmospheric water deficit and soil moisture (fSM -VPD) 
(Bouchet 1963); (Morton 1983). The third fSM estimate was 
based on the apparent thermal inertia (ATI) concept using 
Ts and albedo (fSM –ATI). It was introduced by (Price 1977) 
and expanded by (Cracknell and Xue 1996); Sobrino et al. 
(1998) and (Lu et al. 2009). In this study we estimated ATI 
following Verstraeten et al. (2006) (see equation 4) relying 
on broadband albedo (), and the difference between 
maximum daytime (TsDMax) and minimum nightime 
(TsDmin) surface temperature, and a solar correction factor 
C  that normalizes for changes in solar irradiance with 
latitude, and the solar declination angle. It is assumed that 
ATI reflects both soil and canopy water content if the Ts 
includes both soil and vegetation components (Verstraeten 
et al. 2006; (Tramutoli 2000).  

  

minDDMax TsTs
CATI





1  (equation 4) 

 
To relate remotely sensed ATI and soil moisture and obtain 
fSM-ATI  it was assumed that the minimum and maximum 
seasonal ATI (ATImin and ATIMax) correspond to residual 
and saturated soil moisture contents following Verstraeten 
et al. (2006) (see equation in Table 1). 
 
3.2. Sensitivity analysis  
 
 Sensitivity analysis was performed to evaluate the effects 
of uncertainty on input or parameters. Global Sensitivity 
Analysis (GSA) of Fisher-daily model was performed 
using Extended Fourier Amplitude Sensitivity Test 
(EFAST) (Saltelli et al. 1999). A Fourier decomposition is 
used to obtain the fractional contribution of the individual 
input factors to the variance of the model prediction 
(Campolongo F. 2000). 
To identify the relative importance of each model input in 
terms of its contribution to the output variance of daily 
evapotranspiration, perturbations for each variable were 
applied around the mean value of the growing season and 
also around mean monthly values. Rn, G, NDVI and Tair 
were varied by ±10% around their monthly means and 
annual mean based on uncertainty of measurements. For 
the constant model parameters: m1, b1, m2, b2, kRn, and 
kPAR, the range of uncertainty was based on values used in 
the literature (Table 2). A perturbation of ±25% around the 
mean was considered for the soil moisture constraint (fSM) 
and the plant temperature constraint (fT). 
 



Table 1: Equations and variables involved in estimating Fisher-daily model biophysical constraints, plant variables and 
energy variables. fAPAR  is the fraction of Absorbed Photosynthetically Active Radiation, fIPAR the fraction of intercepted 
photosynthetically active radiation,  Topt is optimum temperature for plant growth (25 °C), Tam (daily mean air temperature 
(°C), fAPARMAX is maximum fAPAR, SWC , Soil Water Content (m3m-3), RH is relative humidity (%), VPD is the vapor 
pressure deficit (kPa), Ts is daily average radiometric surface temperature, Tsmin is the seasonal minimum Ts, TsMAX is the 
seasonal maximum Ts. ATI is the apparent thermal inertia index (°C-1), Rn is daily net radiation (Wm-2). Values for 
parameters: kRn=0.6 (Impens and Lemeur 1969); kPAR=0.5 (Brownsey et al. 1976); m1=1.16; b1=-0.14; (Myneni and 
Williams 1994); m2=1.0; b2==-0.05 (Fisher et al. 2008),  (psychrometric constant)= 0.066 kPaC-1; =1kPa, PT =1.26 
Priestley -Taylor coefficient;  is the slope of the saturation-to-vapor pressure curve (PaK-1). 
 Variable Description Equation Reference 

fg Green canopy fraction  
IPAR

APAR

f

f
fg   

 (Fisher et al. 2008) 
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11020
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
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TaT(.
T

e

e.f
 

(Potter et al. 1993) 

fM Plant moisture constraint 
APARMax

APAR
M f

f
f 

 
(Fisher et al. 2008) 

 













minMax

min
 SWC-SM SWCSWC

SWCSWC
f 1

 

(Fisher et al. 2008) 

 /VPD
FisherSM RHf   (Fisher et al. 2008) 

Biophysical  
constraints 

fSM 
  
  

Soil moisture constraint 
  
  

 













minMax

min
ATISM ATIATI

ATIATI
f  

This study 

fAPAR  
PAR fraction absorbed by 
green vegetation  
  

MODISAPAR
f


 (Myneni et al. 2002) 

fIPAR 
 

PAR fraction intercepted  
by total vegetation  
 

22 bNDVImf IPAR   (Fisher et al. 2008) 

fc fractional vegetation cover fc =fIPAR (Campbell JS (1998) )  

Plant 
variables 

LAI 
  

Leaf Area Index 
  

LAIMOD1S (Myneni et al. 2002) 

Rns   Net radiation to the soil )LAIk(
s

RneRnRn   (Ross, 1976) 
(Norman et al. 1995) 

Epc   
Priestley-Taylor potential  
evapotranspiration for 
canopy 

)RnRn(Ep sPTc 





   (Norman et al. 1995) 

Energy 
 variables 

Eps   
Priestley-Taylor potential  
evapotranspiration for soil 

)GRn(Ep sPTs 





   (Norman et al. 1995) 



 
Table 2: Ranges of variation for input parameters and 
variables in Fisher-daily model. For Rn, G, NDVI and Tair   
ranges of ± 10% around monthly means and annual mean 
was considered. For the constant model parameters: m1, b1, 
m2, b2, kRn, and kPAR, the range of uncertainty was based on 
values used in the literature. For the soil moisture 
constraint (fSM) and the plant temperature constraint (fT) a 
range of ± 25% around the mean was considered.  
 
Input var Range Reference 
Tair ±10% of mean  This study 
Rn ±10% of mean  This study 
G ±10% of mean  This study 
fT ±25% of mean  This study 
fSM ±25% of mean  This study 
NDVI ±10% of mean  This study 
m1 [1.16, 1.42] 
b1 [-0.039, -0.025] 

This study 
This study 

m2 [0.9, 1.2] 
b2 [-0.06, -0.04] 

(Fisher et al. 2008) 
Fisher et al. (2008) 

kRn  [0.3, 0.6] Ross (1976) 
kPAR [0.3, 0.6] Ross (1976) 
 
 
3.3. Evaluation of soil moisture constraints using field 
and satellite data 
 
We evaluated which of the three parameterizations of the 
soil moisture constraint to soil evaporation (see Table 1) 
produced better results using different input data. First, the 
model was run with field measurements for Rn and Tair. 
The soil moisture constraint calculated from field data, fSM 

–SWC, was used as a benchmark as it should provide the 
more accurate results.  The two soil moisture constraints: 
fSM –VPD and fSM –ATI  were first calculated using inputs from 
field measurements. Also it was tested the change in 
accuracy when using fSM –ATI from satellite MSG. The 
different model versions are summarized in Table 3. 
In a second step, the model was run using solely satellite 
and climatic reanalyses products. Thus, forcing data from 
NASA-Power for Rn and Tair were used and the soil 
moisture constraints for fSM –VPD and  fSM –ATI  were 
calculated exclusively from satellite and reanalyses data 
(see Table 3). In this step we evaluated the differences 
when calculating fSM –ATI from MODIS and from SEVIRI 
data.  
Instantaneous Rn from satellite data was estimated by 
calculating the shortwave and longwave components as 
described in (Garcia et al. 2007). To estimate daily Rn 
from instantaneous Rn, a sinusoidal function based on day-
length was used (Jackson et al., 1983).   
Model results were compared with E from Eddy 
Covariance fluxes and the coefficient of determination (r2), 
Mean Average Error (MAE), the bias, the RMSE (Root 
Mean Square Error) and MPE (Mean Absolute Percentage 
Error) were used as indicators of model performance. To 
compare modeled E with E measurements from Eddy 
we forced the closure of the equation for energy balance 
considering the criteria of preserving the Bowen ratio 
(Twine et al. 2000). 

 
Table 3: Seven versions of Fisher-daily differing in (a) the 
forcing variables Rn and Tair being from in-situ or from 
satellite data (b) the formulation for the soil moisture 
constraint: fSM-SWC (from measured volumetric soil water 
content), fSM-VPD (from atmospheric water deficit), and fSM-

ATI (from apparent thermal inertia) and (c) the input data 
for the soil moisture constraints obtained from in-situ or 
satellite (MSG or MODIS data). 
 

Forcing Nr 
Model  
name 

fSM/data 
Rn, 
Tair 

1 Field-SWC SWC/in situ In situ 
2 Field-VPD VPD/in situ In situ 

3 
Field-ATI 
in situ 

ATI/in situ In situ Field  

4 
Field-ATI  
MSG 

ATI/MSG In situ 

5 
Satellite-
VPD 

VPD/NASA 
 Power 

NASA- 
Power 

6 
Satellite-
ATI MSG 

ATI/MSG 
NASA-
Power Satellite 

7 
Satellite-
ATI 
MODIS 

ATI/MODIS 
NASA-
Power 

 
 
3.4. Comparison of model satellite outputs with the 
global MODIS (MOD16) evapotranspiration product 
 
Finally, model satellite outputs were compared to the 
global MODIS evapotranspiration product (MOD16) 
developed by Mu et al., (2011; 2007). Daily model 
estimates and eddy covariance E measurements were 
aggregated at 8-day time scale considering only clear-sky 
days in order to compare with the MOD16 product at the 
same time-step. Only MOD16 data passing quality checks 
(flags) were considered for model evaluation. The results 
were converted from Wm-2 into mmday-1 to match the 
units of MOD16. 
 



4. RESULTS 
 
4.1. Sensitivity analysis  
 
Considering the variability around mean annual 
conditions, the contribution to uncertainty was less than 
20% for most parameters. The greatest uncertainty was 
due to two of the biophysical constraints: fSM and fT with 
22.19% and 17.68 % respectively (total effect). Five other 
variables involved in LAI estimation and energy partition 
between soil and canopy contributed around 12% to model 
uncertainty (Figure 2).  

 
Figure 2. Upper panel: sensitivity of modeled 
evapotranspiration according to mean annual conditions 
(% percentage of explained variance). Main effect is the 
variance explained without considering interactions among 
variables and total effect considering interactions. Lower 
panel: sensitivity of modeled evapotranspiration 
considering monthly (total effect). Uncertainty levels were 
set as ±10% of the mean for input variables NDVI, Tam, 

Rn, and G and of ±25% of the mean for the soil moisture 
(fSM) and plant temperature (fT) constraints. For constant 
model parameters: m1, b1, m2, b2, kRn, and kPAR, the range 
of uncertainty was based on values used in the literature.  
 
However, the relative importance of each variable depends 
on the time of the year. At the beginning of the season, E 
was most sensitive to accuracy in fSM reaching the 
maximum value of explained variance among all variables 
and months (40%). During the maximum peak of NDVI, in 
the middle of the season, the greatest sensitivity was due to 
fT, and m1 (involved in fM and fg estimates via fAPAR). 
During the senescent phase, the model was more sensitive 
to accuracy in kPAR and kRn, involved in energy partition 
into soil and vegetation.  
 
 
4.2. Evaluation of soil moisture parameterizations using 
field and satellite data 
 
Figure 3 shows the changes in the accuracy of E 
retrievals from using different soil moisture 
parameterizations. Using measured SWC the model E 
explains up to 86% of the variance, which considering that 
the closure error of the eddy covariance data represents 
5.78% of the available energy (Rn-G) at daily scale is also 
close to the instrumental accuracy. However, in this site 
during the growing season there was a systematic 
underestimate of E during the period of maximum growth 
followed by an overestimate. When using the atmospheric 
water deficit index correlations were well below those 
found for fSM-SWC (r

2=0.61) and with high biases around 25 
Wm-2. Regarding the thermal Inertia soil moisture 
constraint fSM-ATI, using in-situ data, model performance 
was practically equivalent to that using SWC (fSM-SWC), 
with r2-=0.83 and slightly higher errors but similar or 
lower biases. When running the model using satellite MSG 
instead of in-situ data for fSM-ATI, good results were 
obtained for  r2 =0.80  and MAE=20.21 Wm-2 but higher 
biases than with in-situe data were detected due to E 
underestimates during  the growing season. This was due 
to the fact that the diurnal Ts difference (TsDMax-
TsDmin) was always higher for MSG than for in-situ data 
producing lower soil moisture (fSM) values.
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Figure 3: Daily E (Wm-2) in Agoufou (Mali) from Eddy Covariance data (black dots) and modeled (white dots) during 
2007.  The model was run using different soil moisture constraints: fSM-SWC from measured volumetric soil water, fSM-VPD 

from atmospheric water deficit, fSM-ATIin-situ from apparent thermal inertia from in-situ measurements  and  fSM-ATI -MSG from 
apparent thermal inertia from MSG-SEVIRI measurements. In model versions Rn and Tair were from in-situ 
measurements. 

160 180 200 220 240 260 280 300

0

50

100

150

200

160 180 200 220 240 260 280 300

0

50

100

150

200

DOY

160 180 200 220 240 260 280 300

0

50

100

150

200

160 180 200 220 240 260 280 300

Y
 D

a
ta

0

50

100

150

200

Measured soil moisture SWC Atmospheric water deficit

Apparent Thermal Inertia in-situ Apparent thermal Inertia-MSG

E
(W

m
-2

)

E
(W

m
-2

)
r2=0.86
MAE=13.54 Wm-2

Bias=4.02 Wm-2

r2=0.61
MAE=35.72 Wm-2

Bias=25.62 Wm-2

r2=0.83
MAE=19.72 Wm-2

Bias=7.14 Wm-2

r2=0.80
MAE=20.21 Wm-2

Bias=11.78 Wm-2

160 180 200 220 240 260 280 300

0

50

100

150

200

160 180 200 220 240 260 280 300

0

50

100

150

200

DOY

160 180 200 220 240 260 280 300

0

50

100

150

200

160 180 200 220 240 260 280 300

Y
 D

a
ta

0

50

100

150

200

Measured soil moisture SWC Atmospheric water deficit

Apparent Thermal Inertia in-situ Apparent thermal Inertia-MSG

E
(W

m
-2

)

E
(W

m
-2

)
r2=0.86
MAE=13.54 Wm-2

Bias=4.02 Wm-2

r2=0.61
MAE=35.72 Wm-2

Bias=25.62 Wm-2

r2=0.83
MAE=19.72 Wm-2

Bias=7.14 Wm-2

r2=0.80
MAE=20.21 Wm-2

Bias=11.78 Wm-2



We evaluated the sensitivity of fSM-VPD to b values between 
0.05 to 2, and to the use of daily average or midday 
conditions for RH and VPD. Table 4 shows the results for 
the two levels of b that provided the best results:  b=0.1 
kPa, that was applied at a global scale by in (Mu et al., 
2007), and b=1 kPa applied in (Fisher et al., 2008). The 
best results corresponded to b=1 kPa and daily average 
conditions which are the parameters subsequently used for 
the satellite model estimates instead of the midday original 
conditions.  
 
Table 4: Evaluation of Fisher-daily E with Eddy 
Covariance data for different parameterizations of the soil 
moisture constraint derived from atmospheric water 
deficit. Results are shown for midday and daily average 
conditions for RH (relative humidity) and VPD (Vapor 
Pressure Deficit) and for =0.1 kPa and =1 kPa.  
 
 

Condt 
(kPa) r2 MAE bias RMSE 

MPE 
(%) 

1 0.80 18.08 8.47 24.35 29.0 daily 
0.1 0.66 23.60 37.92 49.94 37.9 
1 0.61 35.72 25.62 40.61 57.3 Mid- 

day 0.1 0.65 21.86 39.71 52.45 35.1 
 
 
Figure 4 compares three model versions based only on 
satellite and reanalyses input data with eddy covariance 
E. The correlations were lower with respect to those 
obtained when using in-situ Rn and Tair especially for the 
case of the fSM-ATI index, which showed the highest biases 
when using SEVIRI data of around 20 Wm-2. This is due 
to a bias in the Rn estimates from SEVIRI that needs to be 
corrected in future algorithm versions.  
Although the use of MODIS data resulted in a lower 
amount of observations (N=33 vs. N=66) compared to 
SEVIRI, as there is only a day and a night overpass, the 
results were more accurate and with a lower bias. 
Despite of the decrease in accuracy compared to in-situ 
modeling (Figure 3), results aggregated at daily-time scale 
were similar to those from a SVAT model based on 
Shuttleworth and Wallace dual coupled to an hydrological 
model run with the same dataset and using a higher 
number of parameters (Ridler et al., 2012). The SVAT 
model assimilated LST  from the MSG-SEVIRI sensor and 
soil moisture from the Advanced Microwave Scanning 
Radiometer on the Earth (AMSR–E)  resulting in r2=0.63 
and MAE=39.24 Wm-2 compared with field data and 
producing also underestimates in E but a higher number 
of observations were available.  
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Daily E (Wm-2) in Agoufou (Mali) from Eddy 
Covariance data (black dots) and model results using 
solely satellite information.  The model was run using fSM-

VPD from atmospheric water deficit, and fSM-ATI  from 
apparent thermal inertia calculated alternatively with 
MSG-SEVIRI or MODIS data. Statistics comparing 
models with eddy covariance data are shown in the chart, 
r2 is the coefficient of determination, MAE is the Mean 
Absolute error, bias is the difference between observed (in 
Wm-2) and model, and N is the number of observations. 
 
 
4.3. Comparison of model satellite outputs with the 
MODIS (MOD16) evapotranspiration product  
 
When aggregating at 8-day time-step the satellite model 
results, the accuracy improved with respect to daily time-
step with r2 between 0.70-0.80 depending on the soil 
moisture constraint used with better results for Apparent 
Thermal Inertia than for the atmospheric water deficit 
approach. The best results corresponded to the use of the 
Thermal Inertia index (ATI) derived from MODIS data 
(Figure 5). However, the MOD16 ET product failed to 
capture the dynamics of evapotranspiration in this 
ecosystem with most of the model estimates disregarded 
due to quality flags and failure to capture the senescence 
process. 
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Figure 5: 8-day  (mm/day) in Agoufou (Mali) from 
Eddy Covariance data (black dots), the global MOD16 ET 
product,  and three model versions relying only on satellite 
information: satellite-VPD-MSG was run using fSM-VPD 

from atmospheric water deficit, satellite-ATI-MSG used  
fSM-ATI  calculated with MSG-SEVIRI and satellite-ATI-
MODIS used  fSM-ATI  calculated with MODIS data. 
Statistics comparing models with eddy covariance data are 
shown in the chart, r2 is the coefficient of determination, 
MAE is the Mean Absolute error, bias is the difference 
between observed and model (in mm/day), and N is the 
number of observations. 
 
 
5. CONCLUSIONS 
 
In dryland regions one of the most critical parameters 
constraining evapotranspiration is soil moisture. An 
evapotranspiration model based on the Priestley-Taylor 
equation depressed according to multiple stress factors, 
Fisher-daily, was evaluated in a savanna site in the Sahel 
(Mali). The model was successful to estimate 
evapotranspiration at the field level, with a better 
performance of the model when using a soil moisture 
constraint based on the Thermal Inertia index (r2=0.83; 
MAE=19.2 Wm-2) than with an atmospheric water deficit 
index.  
When up-scaling the model from field to satellite level, the 
decrease in accuracy was comparable to that observed 
when using a more complex SVAT model with data 
assimilation, with a better performance again of the 
Apparent Thermal Inertia index (r2= 0.69; MAE=13.48 
Wm-2) over the atmospheric water deficit index.  
Regarding the satellite data used to estimate the Apparent 
Thermal Inertia index, MODIS provided more accurate 
results than SEVIRI data but fewer observations were 
available due to its lower frequency of acquisition.  
The global MODIS 8-day evapotranspiration product 
(MOD16) failed to capture the dynamics of 
evapotranspiration in this Sahelian savanna, while our 
satellite models improved their accuracy at 8-day time 
scale compared to daily time-step being able to detect the 
onset and the end of the rainy season as well as stress 
features despite of the biases.  

Future work should focus on bias correction and 
interpolation between cloudy days. Model 
intercomparisons with the same climatic forcings are 
desirable for comparison of the MOD16 and our version of 
the Fisher-daily model as well. 
The version proposed here of the Fisher model using a soil 
moisture constraint based on apparent thermal inertia, fSM-

ATI offers great potential for regionalization in the Sahel 
region as no field-calibrations are required and water vapor 
deficit estimates, required in the original version, are not 
necessary, being air temperature and incoming solar 
radiation the only input variables required, apart from 
routinely available satellite products. 
 
Acknowledgements 
 
This study was funded by the Danish Council for 
Independent Research and Technology and Production 
Sciences (FTP) Grant 09-070382. MODIS data were 
obtained through the online Data Pool at the NASA Land 
Processes Distributed Active Archive Center (LP DAAC), 
USGS/Earth Resources Observation and Science Center, 
Sioux Falls, South Dakota 
 (http://lpdaac.usgs.gov/get_data). The authors would like 
to thank EUMETSAT for providing the MSG-SEVIRI 
data. Field data for the savanna site in Mali were collected 
within the frame of the AMMA project (www.amma-
eu.org). The Malian site belongs to the AMMA-CATCH 
observatory (www.amma-catch.org). The authors 
acknowledge helpful comments and feedback from Rado 
Gucinski, Mads Olander Rasmussen, Hector Nieto and 
Simon Proud. 
 
6. REFERENCES 
 
Berni, J.A.J., Zarco-Tejada, P.J., Sepulcre-Canto, G., 

Fereres, E., & Villalobos, F. (2009). Mapping canopy 
conductance and CWSI in olive orchards using high 
resolution thermal remote sensing imagery. Remote 
Sensing of Environment, 113, 2380-2388 

Boegh, E., Soegaard, H., & Thomsen, A. (2002). 
Evaluating evapotranspiration rates and surface 
conditions using Landsat TM to estimate atmospheric 
resistance and surface resistance. Remote Sensing of 
Environment, 79, 329-343 

Bouchet, R.J. (1963). Evapotranspiration reelle et 
potentielle, signification climatique. International 
Association of Hydrological Sciences (IAHS), Pub., 62, 
134–142 

Brownsey, G.J., Eldridge, J.W., Jarvis, D.A., Ross, G., & 
Sanders, I. (1976). New Light-Scattering 
Photogoniometer for Accurate Measurements. Journal of 
Physics E-Scientific Instruments, 9, 654-658 

Cai, G., Xue, Y., Hu, Y., Wang, Y., Guo, J., Luo, Y., Wu, 
C., Zhong, S., & Qi, S. (2007). Soil moisture retrieval 
from MODIS data in Northern China Plain using thermal 
inertia model. International Journal of Remote Sensing, 
28, 3567-3581 

Campbell JS, N.J. ((1998) ). An Introduction to 
Environmental Biophysics, : Springer.  

113 137 161 185 209 233 257 281 305 329 353

DOY

0

1

2

3

4

5

6

7

E
T

 (
m

m
/d

a
y)

 EDDY

 Globa l  M OD16 product;   r2=0.32; M AE=1.56; b ias=-0.56; N=15
 satel l i te -AT I-M ODIS;      r2=0.80; M AE=0.39; b ias=0.23; N=18
 satel l i te -AT I-M SG;      r2=0.77; M AE=0.81; b ias=0.66; N=16

 satel l i te -VPD-M SG;      r2=0.70; M AE=1.06; b ias=0.96; N=16



Campolongo F., S.A., Sørensen, T., Tarantola S. (2000). 
Hitchhiker's guide to sensitivity analysis. Sensitivity 
analysis, (pp. 15-47): Wiley, New York 

Cracknell, A.P., & Xue, Y. (1996). Thermal inertia 
determination from space - A tutorial review. 
International Journal of Remote Sensing, 17, 431-461 

Fisher, J.B., Tu, K.P., & Baldocchi, D.D. (2008). Global 
estimates of the land–atmosphere water flux based on 
monthly AVHRR and ISLSCP-II data, validated at 16 
FLUXNET sites. Remote Sensing of Environment, 112, 
901-919 

Garcia, M., Villagarcia, L., Contreras, S., Domingo, F., & 
Puigdefabregas, J. (2007). Comparison of three operative 
models for estimating the surface water deficit using 
ASTER reflective and thermal data. Sensors, 7, 860-883 

Geiger, B., Carrer, D., Franchisteguy, L., Roujean, J.L., & 
Meurey, C. (2008). Land Surface Albedo Derived on a 
Daily Basis From Meteosat Second Generation 
Observations. Ieee Transactions on Geoscience and 
Remote Sensing, 46, 3841-3856 

Glenn, E.P., Huete, A.R., Nagler, P.L., Hirschboeck, K.K., 
& Brown, P. (2007). Integrating Remote Sensing and 
Ground Methods to Estimate Evapotranspiration. Critical 
Reviews in Plant Sciences, 26, 139-168 

Impens, I., & Lemeur, R. (1969). Extinction of net 
radiation in different crop canopies. Archiv für 
Meteorologie, Geophysik und Bioklimatologie Serie B, 
17, 403-412 

Leuning, R., Zhang, Y.Q., Rajaud, A., Cleugh, H., & Tu, 
K. (2008). A simple surface conductance model to 
estimate regional evaporation using MODIS leaf area 
index and the Penman-Monteith equation. Water 
Resources Research, 44 

Lu, S., Ju, Z., Ren, T., & Horton, R. (2009). A general 
approach to estimate soil water content from thermal 
inertia. Agricultural and Forest Meteorology, 149, 1693-
1698 

Miralles, D.G., Holmes, T.R.H., De Jeu, R.A.M., Gash, 
J.H., Meesters, A.G.C.A., & Dolman, A.J. (2011). Global 
land-surface evaporation estimated from satellite-based 
observations. Hydrology and Earth System Sciences, 15, 
453-469 

Morton, F.I. (1983). Operational estimates of areal 
evapotranspiration and their significance to the science 
and practice of hydrology. Journal of Hydrology, 66, 1-
76 

Mougin, E., Hiernaux, P., Kergoat, L., Grippa, M., de 
Rosnay, P., Timouk, F., Le Dantec, V., Demarez, V., 
Lavenu, F., & Arjounin, M. (2009a). The AMMA-
CATCH Gourma observatory site in Mali: Relating 
climatic variations to changes in vegetation, surface 
hydrology, fluxes and natural resources. Journal of 
Hydrology, 375, 14-33 

Mougin, E., Hiernaux, P., Kergoat, L., Grippa, M., de 
Rosnay, P., Timouk, F., Le Dantec, V., Demarez, V., 
Lavenu, F., Arjounin, M., Lebel, T., Soumaguel, N., 
Ceschia, E., Mougenot, B., Baup, F., Frappart, F., Frison, 
P.L., Gardelle, J., Gruhier, C., Jarlan, L., Mangiarotti, S., 
Sanou, B., Tracol, Y., Guichard, F., Trichon, V., Diarra, 
L., Soumaré, A., Koité, M., Dembélé, F., Lloyd, C., 
Hanan, N.P., Damesin, C., Delon, C., Serça, D., Galy-

Lacaux, C., Seghieri, J., Becerra, S., Dia, H., Gangneron, 
F., & Mazzega, P. (2009b). The AMMA-CATCH 
Gourma observatory site in Mali: Relating climatic 
variations to changes in vegetation, surface hydrology, 
fluxes and natural resources. Journal of Hydrology, 375, 
14-33 

Myneni, R.B., Hoffman, S., Knyazikhin, Y., Privette, J.L., 
Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., 
Smith, G.R., Lotsch, A., Friedl, M., Morisette, J.T., 
Votava, P., Nemani, R.R., & Running, S.W. (2002). 
Global products of vegetation leaf area and fraction 
absorbed PAR from year one of MODIS data. Remote 
Sensing of Environment, 83, 214-231 

Myneni, R.B., & Williams, D.L. (1994). On the 
Relationship between Fapar and Ndvi. Remote Sensing of 
Environment, 49, 200-211 

Norman, J.M., Kustas, W.P., & Humes, K.S. (1995). 
Source Approach for Estimating Soil and Vegetation 
Energy Fluxes in Observations of Directional 
Radiometric Surface-Temperature. Agricultural and 
Forest Meteorology, 77, 263-293 

Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., 
Vitousek, P.M., Mooney, H.A., & Klooster, S.A. (1993). 
Terrestrial Ecosystem Production - a Process Model-
Based on Global Satellite and Surface Data. Global 
Biogeochemical Cycles, 7, 811-841 

Price, J.C. (1977). THERMAL INERTIA MAPPING: A 
NEW VIEW OF THE EARTH. J Geophys Res, 82, 
2582-2590 

Priestley, C.H.B., & Taylor, R.J. (1972). On the 
Assessment of Surface Heat Flux and Evaporation Using 
Large-Scale Parameters. Monthly Weather Review, 100, 
81-92 

Qiu, G.Y., Shi, P.J., & Wang, L.M. (2006). Theoretical 
analysis of a remotely measurable soil evaporation 
transfer coefficient. Remote Sensing of Environment, 
101, 390-398 

Saltelli, A., Tarantola, S., & Chan, K.P.S. (1999). A 
quantitative model-independent method for global 
sensitivity analysis of model output. Technometrics, 41, 
39-56 

Sandholt, I., Rasmussen, K., & Andersen, J. (2002). A 
simple interpretation of the surface 
temperature/vegetation index space for assessment of 
surface moisture status. Remote Sensing of Environment, 
79, 213-224 

Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., 
Rota, S., & Ratier, A. (2002). An introduction to 
Meteosat Second Generation (MSG). Bulletin of the 
American Meteorological Society, 83, 977-+ 

Sobrino, J.A., El Kharraz, M.H., Cuenca, J., & Raissouni, 
N. (1998). Thermal inertia mapping from NOAA-
AVHRR data. Synergistic Use of Multisensor Data for 
Land Processes, 22, 655-667 

Timouk, F., Kergoat, L., Mougin, E., Lloyd, C.R., 
Ceschia, E., Cohard, J.M., Rosnay, P.d., Hiernaux, P., 
Demarez, V., & Taylor, C.M. (2009). Response of 
surface energy balance to water regime and vegetation 
development in a Sahelian landscape. Journal of 
Hydrology, 375, 178-189 



Tramutoli, V., P. Claps, M. Marella, N. Pergola, C. Sileo 
(2000). Feasibility of hydrological application of thermal 
inertia from remote sensing. In, 2nd Plinius Conference 
on Mediterranean Storms,16–18  Siena, Italy,  

Trigo, I.F., Peres, L.F., DaCarnara, C.C., & Freitas, S.C. 
(2008). Thermal land surface emissivity retrieved from 
SEVIRI/meteosat. Ieee Transactions on Geoscience and 
Remote Sensing, 46, 307-315 

Twine, T.E., Kustas, W.P., Norman, J.M., Cook, D.R., 
Houser, P.R., Meyers, T.P., Prueger, J.H., Starks, P.J., & 
Wesely, M.L. (2000). Correcting eddy-covariance flux 
underestimates over a grassland. Agricultural and Forest 
Meteorology, 103, 279-300 

Verstraeten, W.W., Veroustraete, F., van der Sande, C.J., 
Grootaers, I., & Feyen, J. (2006). Soil moisture retrieval 
using thermal inertia, determined with visible and 
thermal spaceborne data, validated for European forests. 
Remote Sensing of Environment, 101, 299-314 

Yuan, W.P., Liu, S.G., Yu, G.R., Bonnefond, J.M., Chen, 
J.Q., Davis, K., Desai, A.R., Goldstein, A.H., Gianelle, 
D., Rossi, F., Suyker, A.E., & Verma, S.B. (2010). 
Global estimates of evapotranspiration and gross primary 
production based on MODIS and global meteorology 
data. Remote Sensing of Environment, 114, 1416-1431 

Zhang, K., Kimball, J.S., Mu, Q., Jones, L.A., Goetz, S.J., 
& Running, S.W. (2009). Satellite based analysis of 
northern ET trends and associated changes in the 
regional water balance from 1983 to 2005. Journal of 
Hydrology, 379, 92-110 

Zhang, Y., Leuning, R., Hutley, L.B., Beringer, J., 
McHugh, I., & Walker, J.P. (2010). Using long-term 
water balances to parameterize surface conductances and 
calculate evaporation at 0.05° spatial resolution. Water 
Resources Research, 46 

 
 


