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Table 3 : For four experiments, the relationship of the maximum wind speed to the contribution (i.e. | FLXE/FLXM |) of non-
axisymmetric component in the inner core region, which radial distance is less than 100 km and height is below 4 km.
Max FLXE is maximum FLXM in the inner core, Min FLXE is minimum FLXE in the inner core.

Table 2 : In four experiments, CE and CD value.

processes.
“1.0”, “1.5” are multiplication factors for CE, CD. CD 1.0 1.5 1.0 1.5




