

能源及環境學院 SCHOOL OF ENERGY AND ENVIRONMENT

Angular momentum transport and tropical cyclone size changes

Kelvin T. F. Chan and Johnny C. L. Chan

Chan, K. T. F., and J. C. L. Chan, 2012: Angular momentum transport and tropical cyclone size changes. *Mon. Wea. Rev.* (under review)

18 April 2012

30th Conference on Hurricanes and Tropical Meteorology

Outline

- Introduction and Objectives
- Data and Methodology
- Results
- Conclusions

TC Size and Intensity

Objectives

- To investigate the mechanism(s) on how the TC size changes using observational and reanalysis data
 - Dynamic factor: Change in Angular Momentum Transport
- To identify the synoptic flow difference between the size-increase (+ Δ S) and size-decrease (- Δ S) TCs

Data

Data based on: Chan and Chan (2012)

- Observational data TC size
 - REMSS QuikSCAT data
 - 0.25° lat x 0.25° lon
 - July 19, 1999 Nov 19, 2009 (Study period)
- Reanalysis Data TC AM
 - NCEP CFSR data
 - 0.5° lat x 0.5° lon

9	香港城市大學 City University of Hong Kong	Intro. & Objs. Data & Methodology Resul	lts	Conclusions	能源及環境學 SCHOOL OF ENE AND ENVIRONM	[』] 院 RGY ENT
		Categories	5			
				$\Delta S_{TC_i} = S_{TC_i}(t)$ $\Delta I_{TC_i} = I_{TC_i}(t)$ $t^2 - t^1$	t2) – S⊤ci(t1) 2) – I⊤ci(t1) ≤ 24 h	
	WNP	I↑		I↓		
	S↑	191 (111) [I:+13.7, S:+0.42]	93 (51) [I:-12.4,	S:+0.30]	
	S↓	68 (55) [I:+13.9, S:-0.22]	70 ((42) [I:-11.6,	S:-0.24]	
	NA	I↑		I↓		
	S↑	59 (31) [I:+12.3, S:+0.29]	57 (23) [I:-10.0,	S:+0.26]	
	S↓	30 (22) [I:+11.2, S:-0.21]	38	(25) [I:-9.9,	S:-0.27]	

- Term A: Symmetric RAM (SRAM)
- Term B: Asymmetric or eddy RAM (ARAM)
- Term C: Symmetric Coriolis torque (SCT)
- Term D: Asymmetric or eddy Coriolis torque (ACT)

Intro. & Objs.

能源及環境學院 SCHOOL OF ENERGY AND ENVIRONMENT

12

Possible mechanisms

- Change in size mainly depends on the change in the low level AM import (ΔS α Δlow.AM.im)
- Change in intensity mainly depends on the change in the upper level AM export (ΔI α Δupp.AM.ex)

Size-increase (+∆S) group [

- Significant strengthening of the anticyclone to the southeast of TC vortex
- Increase in inflow to the southeast
- Decrease in inflow to the east

能源及環境學 SCHOOL OF ENER(AND ENVIRONME)

Size-decrease ($-\Delta S$) group

- Decrease in inflow to the southwest of TC center
 - No strengthening of anticyclone to the southeast

Conclusions

- In WNP and NA
 - $-\Delta S \alpha \Delta low.AM.im$
 - $-\Delta I \alpha \Delta upp.AM.ex$

Probably it is applicable to all ocean basins

Conclusions

- Size changes potentially due to the changes in
 - Low-level synoptic flow
 - TC movement

References

- Chan, K. T. F., and J. C. L. Chan, 2012: Size and Strength of Tropical Cyclones as Inferred from QuikSCAT Data. *Mon. Wea. Rev.*, **140**, 811–824
- Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. *Geophys. Res. Lett.*, 37, L18816, doi:10.1029/2010GL044558.
- Merrill, R. T., 1984: A comparison of large and small tropical cyclones. *Mon. Wea. Rev.*, **112**, 1408-1418.

Thank you!

Chan, K. T. F., and J. C. L. Chan, 2012: Angular momentum transport and tropical cyclone size changes. *Mon. Wea. Rev.* (under review)

> Kelvin.T.F.Chan@student.cityu.edu.hk Johnny.Chan@cityu.edu.hk

香港城市大學 City University of Hong Kong

Appendix

能源及環境學院 SCHOOL OF ENERGY AND ENVIRONMENT

Why the change in SCT is the most relevant contributor to the change in AAMF?

香港城市大學 City University of Hong Kong

Appendix

能源及境境學院 SCHOOL OF ENERGY AND ENVIRONMENT

Why the change in SCT is the most relevant contributor to the change in AAMF?

Observational Data – TC Size

Data based on: Chan and Chan (2012)

- REMSS QuikSCAT data
 - Satellite ocean-surface wind
 - 2-times daily (ascending and descending paths) at the same location
 - 0.25° lat x 0.25° lon
 - Time, Wind speed, Wind direction, Rain flag
- Data selection criteria
 - July 19, 1999 Nov 19, 2009 (Study period)
 - TC must be at tropical storm (TS) intensity or above (MSW≥17 m s⁻¹)
 - The TC center must be covered by the swath
 - The distance between the TC center and the edge of the swaths must be > 1° lat
 - More than 50% of the TC circulation is covered by the swath
 - The TC circulation should have no extensive wind-discontinuity problem
 - Azimuthally-averaged wind speed profile must reach 17 m s⁻¹ or above after filtering all rain-flagged data
 - R17 is not close to any landmass
 - No rain-flagged data point is used

Angular momentum transports

AAM = RAM + EAM

 $M(r) = \frac{0}{10}$

$$= v_{\theta}r + \frac{1}{2}fr^{2}$$

$$v_r = \overline{v_r} + v_r'$$

$$f_{\theta} = v_{\theta} + v_{\theta}$$

$$= \frac{\int_{0}^{2\pi} \left(v_{\theta}r + \frac{fr^{2}}{2} \right) v_{r}rd\theta}{\int_{0}^{2\pi} rd\theta}$$

Absolute angular momentum (AAM) Relative angular momentum (RAM) Earth angular momentum (EAM) Coriolis parameter (f)

Tangential wind (v_{θ}) Radial wind (v_r) Each wind can be separated into symmetric and asymmetric parts

$$M(r) = r\overline{v_{\theta}}\overline{v_{r}} + r\overline{v_{r}}\overline{v_{\theta}} + \frac{f_{0}r^{2}\overline{v_{r}}}{2} + \frac{r^{2}\overline{fv_{r}}}{2}$$

(f₀ is the Coriolis parameter at TC center)

Transitions of TC size

R17	WNP (°lat)
Small (25 th percentile)	1.41
Medium	1.41-2.61
Large (75 th percentile)	2.61

Growing (+△S) TC

Shrinking (– Δ S) TC

Transition name	Initial size	Final size	No. of cases (TCs)	Transition name	Initial size	Final size	No. of cases (TCs)
sS	S	S	51 (38)	Ss	S	S	25 (22)
sM	S	Μ	48 (45)	Ms	Μ	S	12 (12)
sL	S	L	0 (0)	Mm	М	m	84 (55)
mM	m	Μ	131 (71)	Ls	L	S	0 (0)
mL	m	L	42 (39)	Lm	L	m	14 (12)
lL	1	L	79 (39)	Ll	L	1	32 (22)

Small, Medium and Large + Δ S and – Δ S TCs

- The extent, the intensity, and the dynamics (especially the radial winds) of the environmental lower tropospheric wind surges can affect the TC size
- Increase and decrease in low-level inflow are found in growing and shrinking TCs, respectively

Appendix

Changes in TC movement

	$+\Delta S$ group	$-\Delta S$ group
Sample size	351	167
No. of TCs	131	95
Mean direction (°)	153.6	158.7
Mean direction change (°)	3.5	1.8
$\Delta U (km/h)$	2.48	2.27
$\Delta V (km/h)$	1.93	0.57

Appendix

TC movement preferences

	Small	Medium	Large	All
Sample size	203	402	208	813
No. of TCs	108	126	69	176
Mean latitude (°)	19.5	21.6	21.9	21.2
Mean direction (°)	144.6	154.5	155.2	152.2
Mean U (km/h)	-7.05	-4.06	-4.38	-4.89
Mean V (km/h)	7.64	11.49	14.29	11.25

Angular momentum transports

- Term A: Symmetric RAM (SRAM)
- Term B: Asymmetric or eddy RAM (ARAM)
- Term C: Symmetric Coriolis torque (SCT)
- Term D: Asymmetric or eddy Coriolis torque (ACT)