Characteristics of Extreme Summer Convection in the Tropical Americas

Manuel D. Zuluaga and Robert A. Houze Jr. University of Washington

30th Conference on Hurricanes and Tropical Meteorology, 15-20 April 2012, Ponte Vedra Beach, Florida

Motivation

- MCC "hot spots" over the Americas
- Severe weather and flash floods
- Much has been done over midlatitude areas of North and South America
- Less where the ITCZ intersects the Andes

Objectives

- Document occurrence, frequency and characteristics of extreme convection where ITCZ intersects Andes
 - 14 years of TRMM radar reflectivity and rain type (version 7)
- Describe synoptic conditions leading to these forms of extreme convection
 - ECMWF ERA interim reanalysis to characterize the atmospheric conditions in which extreme convection occurs

Radar identification of extreme events

(e.g., Houze et al. 2007; Romatschke et al. 2010)

JJA – ERAi divergence, wind and humidity

- Trade wind convergence of energy and moisture (Hadley circulation)
- Local concentration: North American monsoon circulation, Intra-Americas jet, and the Chocó low level jet
- Operating in regions of significant low-level moisture gradients areas

Deep Convective cores (DC) Wide Convective cores (WC) **Broad Stratiform** regions (BS)

Frequency of occurrence

Deep Convective cores:

- West of Sierra Madre range
- Northern fringes of the Andes
- Central America
- Caribbean Islands
- South Florida

• Wide Convective cores:

- Same regions as DC
- Amazon region
- Pacific coast of Colombia and Panamá

• **Broad Stratiform** regions:

- ITCZ
- Pacific coast of Colombia and Panamá

Deep Convective cores (DC)

Wide Convective cores (WC)

Broad
Stratiform
regions
(BS)

Frequency of occurrence

• **Deep Convective** cores:

Northern fringes of Los Andes (Bajo Cauca region)

Wide Convective cores:

Both Cauca and Chocó regions

Broad Stratiform regions:

Pacific coast of Colombia and Panamá (Chocó region)

Deep Convective cores (DC)

Frequency of occurrence

• **Deep Convective** cores:

Northern fringes of Los Andes (Bajo Cauca region)

Wide Convective cores (WC)

• Wide Convective cores:

Both Cauca and Chocó regions

Broad
Stratiform
regions
(BS)

Broad Stratiform regions:

Pacific coast of Colombia and Panamá (Chocó region)

Deep (DC) Wide (WC) Broad (BS) Volumetric rain [kg/s]

Rainfall, % convective, and echo type

- Storms containing DC cores have very high convective rain percentage but relative low volumetric rain
- In contrast, BS regions have low convective rain but higher volumetric rain rates

Convective rain percentage

Number of flashes

Rainfall, % convective, and echo type

- Storms containing DC cores have very high convective rain percentage but relative low volumetric rain.
- In contrast, BS regions have low convective rain but higher volumetric rain rates.
- Most of the storms with BS regions have little to no lightning
- Storms containing convective cores are the ones that produce the most lighting

Number of Lightning flashes

Deep Convective

Wide Convective

Broad Stratiform

- Lighting flashes directly related with the location of Convective cores
- WC cores produce more lightning flashes per area
- BS regions produce little to no flashes

Anomaly composites for the closest hour when **DC cores** occurred over the Bajo Cauca region

N=30 events

 Anomalous northeasterly flow converging moisture over the northern slopes of the Andes

Anomaly composites for the closest hour when **DC cores** occurred over the Bajo Cauca region

Anomalous southward flow 6 hours before the event

Anomaly composites for the closest hour when WC cores occurred over the Bajo Cauca region

N=142 events

Significant westerly anomalous flow converging in the low-lands of the northern fringes of the Andes.

Anomaly composites for the closest hour when **WC cores** occurred over the Bajo Cauca region

 Shift of convergence from Pacific coast of Colombia towards the Bajo Cauca region

Anomaly composites for days when **WC cores** occurred over the Chocó region

N=165 events

 Events occur in the confluence of recurving branch of the Intra-Americas low level jet from the north and the Chocó Jet from the south

Anomaly composites for days when **BS regions** occurred over the Chocó region

 Zonally oriented anomalous flow bringing moisture from the Pacific ocean up to the coastal region.

Conclusions

- Deep convective cores are located only in the Bajo Cauca region, with a northeasterly flow impinging on the northern end of Los Andes range
- Wide convective cores are located in both, Bajo Cauca and Chocó regions, were a recurving branch of the Intra-Americas Jet and the intensification of the Chocó low-level jet concentrate moisture on the west side of Los Andes range
- Broad stratiform regions are located mainly over the coast of Colombia and Panamá, region were the Chocó low-level jet runs against the west side of the Los Andes and is enhanced by westerly flow of the ITCZ winds