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1. INTRODUCTION 

 

Condensation of water above the Earth’s 
surface creates clouds. Normally, clouds 
develop in any air mass that becomes saturated 
by way of atmospheric mechanisms that cause 
the temperature of an air mass to be cooled to 
its dew point. 

Numerical weather prediction (NWP) models 
are techniques used to predict the future state of 
the weather by solving a set of equations which 
govern the behavior of the atmosphere. A 
simplified numerical model for studying the 
behavior of air in the troposphere in a tropical 
climate is described in this paper. It shows 
students how NWP models are constructed 
without involving the complicated 
transformations in actual operational models. 

A simple numerical model in dry air with 
horizontal grid steps of 1 km has shown by 

experiments that a time step of 0.3  seconds is 
too large for the model without the deep 
convection approximation (Noisri and Sukawat, 
2011). But with the deep convection 

approximation one can use a time step of 0.4  
seconds (Noisri and Exell, 2011) and get 
reasonable results in numerical experiments on 
the vertical movement of air over a heated 
surface representing a city heat island. 

 
2. MODEL DESCRIPTION 

 

In our model there is one horizontal dimension, 
the vertical dimension, and the time dimension. 
The variables are located on a staggered grid 
with stretched grid spacing in the vertical 
dimension and constant grid spacing in the 
horizontal dimension. 
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Symbol Description 

x  Horizontal distance 

z  Vertical height 

t  Time 

g  Acceleration of gravity 

R  Gas constant for air 

vc  Specific heat of air 

ρ  Air density 

u  Horizontal velocity 

w  Vertical velocity 

T  Temperature 

0
z  Roughness length of the surface 

sq  Surface heating rate per unit area 

,i k  Horizontal and vertical cell indices 

sρ  Saturated vapor density 

vρ  Water vapor density 

cm  Condensed cloud water per unit  
volume 

L  Latent heat of condensation of water 

Table1. List of symbols 
 

The molecular viscosity terms are omitted; the 
body forces are friction at the Earth’s surface in 
the horizontal momentum equation and gravity in 
the vertical momentum equation; heating and 
cooling of the air occur at the Earth’s surface; 
kinetic energy and potential energy in the 
temperature equation are omitted; the Coriolis 
force is omitted; no distinction is made between 
liquid water and ice; the effects of the moisture 
on the thermodynamic properties of the air are 
neglected; rain is not included; and the deep 
convection approximation is used. 



2 

 

The deep convection approximation (Pielke, 
2002) is 

 

0

0
,

u w w

x z z

ρ
ρ

∂ ∂ ∂
+ = −

∂ ∂ ∂
 (1) 

where ( )0 zρ  is calculated from a steady 

background temperature profile ( )0T z  and the 

assumption of hydrostatic equilibrium in the 
undisturbed atmosphere. 

The steady background temperature profile is 
an approximation to the annual mean upper air 
temperatures at Bangkok represented by the 
formula  

 ( )0
302 0.00675 ,T z z= −  (2)  

where T
0
 is in kelvins. 

2.1 Governing Equations 
 

The model equations listed below are derived 
from the fundamental system of partial differential 
equations of computational of fluid dynamics 
(Anderson, 1995). The temperature and moisture 
equations used depend on whether or not the air 
is saturated. A simple equation for the saturation 
vapor density of water as a function of 
temperature is obtained by integrating the 
Clausius Clapeyron equation (Rogers and 
Yau,1989) assuming that the latent heat of 
condensation of water vapor is constant and 
water vapor is an ideal gas. 
 
The density equation 

The density equation without the deep 
convection approximation is 
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and the density equation with the deep 
convection approximation is 
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The vertical velocity equation 
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The wind equation 
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The last term is horizontal friction, which is 

applied only in the layer of air of thickness z∆  at 
the Earth’s surface where the roughness length 

is 
0
.z  

 

Unsaturated air 

The temperature equation 
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The surface heating term is applied only in the 
layer of air at the Earth’s surface. 

 
The water vapor equation 
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The condensed cloud water equation 

0cm =  (9) 

 
Saturated air 

The temperature equation 
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The water vapor equation 
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The condensed cloud water equation 
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2.2 Finite difference and experiments 
 
2.2.1 Finite difference set up 

The domain of the model is divided into a

25 100×  array of cells. The horizontal resolution 

is one kilometer. A vertical coordinate s  is used 
in accordance with the transformation 

2
75 25z s s= +  in order to give thin layers at the 

Earth’s surface and thick layers at the top of the 
troposphere (Exell, 2009).  

The model variables are evaluated at points 
on an Arakawa-C grid. The horizontal velocity is 
on the left side of the cell, the vertical velocity is 
on the bottom of the cell, and other variables are 
in the center of each cell, as shown in Fig1.  

The leapfrog method is used to calculate the 
model variables at next time step. The Euler 
method is used for the first time step. First and 
second order finite difference approximations are 
used in the modeling of space derivatives. In the 
row of cells at the Earth’s surface one-sided 
second order difference approximations to 
derivatives with respect to z  are used. 

The initial values of the model variables in 
each cell are functions of the height of the cell 

above the Earth’s surface, but are constant along 
the horizontal rows of cells. The temperature 
equation is given by 

0 2
302.211 0.3375 0.16875 ,kT k k= − −  (13) 

where 1, 2,..., 25.k =  

It is assumed the initial values of the velocity, 
surface heating and amounts of cloud water are 
zero everywhere. The initial values of the 
temperature and density satisfy the hydrostatic 
equation, and the initial values of vapor density 
are calculated on the assumption that the dew 
point depression below the initial air temperature 
is a constant at all heights. The model variables 
are fixed at the boundary. 

 
2.2.2 Numerical Experiments 

Two different experiments were done to study 
the effects of a heated surface in the middle of 
the domain: 

Case1.  

Without the deep convection approximation.  
- relaxation at the boundary 
- smoothing in time 

Case2.  

With the deep convection approximation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig1. The model variables are evaluated on an Arakawa-C grid with the stretched grid. The horizontal     

velocity is on the left side of the cell, the vertical velocity is on the bottom of the cell, and other variables are 
in the center of each cell. 
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3. RESULTS AND DISCUSSION 

 
The object of these experiments will be to find 

the largest temporal resolution that gives stable 
results for model times of the order an hour and 
to determine the errors in the results. 

 

The model Time step Total time 

without deep 
convection 

approximation 

0.2 s more than an hour 

0.3 s less than a minute 

with deep 
convection 

approximation 

0.4 s more than an hour 

0.5 s less than a minute 

Table2.  The temporal resolution and the total time that 
give stable results for the model. 

 
Preliminary results have shown that a time 

step of 0.3  seconds is too large for the model 

without the deep convection approximation and 
using the deep convection approximation allows 
double the size of time step. In addition, 
relaxation at the boundary and smoothing in time 
by a Robert-Asselin filter have little effect on the 
model without the deep convection 
approximation. 

However, previous results have shown that 
this very simple model can give reasonable 
results in numerical experiments on vertical 
movement processes in the tropics. 

 

4. FUTURE WORK 

 
Experiments with the model: 

- A heated area in the middle of a cooled area. 
- A cooled area in the middle of a heated area. 
- Random heating and cooling at the surface in 

space and time across the domain. 
- A rough area in the middle of a smooth 

surface. 
- A smooth area in the middle of a rough 

surface. 
- Random variation of surface roughness 

across the domain. 
- Cloud formation or the absence of cloud in air 

with high and low humidity. 
- The effect of variable surface properties on 

the formation of clouds. 
- The effect of vertical wind shear on cloud 

forms. 
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