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1. Introduction

Tropical cyclones (TCs) are a significant threat to
populations.  Accurate estimation and prediction of TC’s
intensity will save lives and property.  The Dvorak TC
intensity estimation technique has been the primary
method applied for more than 30 years (Velden et al.
2006a) in the world.  The Dvorak technique (DT)
subjectively estimate TC intensity based on visible and
infrared satellite images (Dvorak 1975, 1984).
Improvement of the original DT has evolved into the
objective Dvorak technique (ODT).  The main goal of
the ODT is to use computer based objective method to
limit the subjectivity for human interpretation of DT
(Velden and Olander 1998). To overcome the
limitations of the ODT such as manual selection of the
storm center or the inability to operate on weak storms,
advanced objective Dvorak technique (AODT) was
developed.  The most recent version of ODT is the
Advanced Dvorak Technique (ADT).  Unlike the ODT
and AODT whose focuses were to mimic the subjective
technique, the ADT concentrates on extending the
method beyond the original application and constraints
(Olander and Velden 2007).

In spite of wide usage of the DT for TC analysis it
has some limitations. First, this method infers intensity
from cloud features and patterns instead of using direct
measurement of wind.  This leads to an error from
natural variability between the observed wind speed and
remotely sensed cloud patterns. Second, the DT is a
group of practical rules and has not theoretical
foundation. Third, this method does not use the
valuable historical data mainly because of great
challenges on computing and human resources.

This research is inspired by the availability of tropical
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cyclone satellite imagery.  Developing a new automated
TC estimation technique using Hurricane Satellite
(HURSAT) data is still a challenge. We hypothesize
that discovering unknown regularities and abnormalities
that may exist in the large group of past observations
could help human experts interpret TC intensity
changes from various points of view.

Our goal is to provide a data mining tool that
increases the ability of human experts to analyze huge
amount of historical data for TC intensity estimation.
This line of research discovers a set of facts and
guidelines with the statistical justification.

The proposed intensity estimation algorithm has two
parts: temporal constraints and image feature analysis.
This paper focuses on the temporal constraints.
Temporal information provides a priori estimates of
storm intensity (in terms of wind speed) prior to using
any satellite analysis.

The remainder of the paper is organized as follows.
Section 2 describes the methodology of temporal
analysis.  Section 3 provides the details of preliminary
work on spatial data processing and results.  Section 4
discusses the validation process for temporal proposed
technique, and section 5 provides discussion and future
work.

2. Methodology

This section is divided into four main phases.  The
first phase describes the database which is used for
training and validation process, the second phase
describes the initial data mining steps.  The third phase
describes extracted features, and the fourth phase
outlines the procedure for intensity estimation.

2.1 Database

Hurricane Satellite data (HURSAT–B1) described in
Knapp and Kossin (2007) includes best-track intensity
used as a ground truth data (see detailed specification
in Table 1).  This data spans from 1978 through 2009
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and provides TC coverage of Northern Atlantic, Eastern
and Western Pacific, Southern Hemisphere and Indian
Oceans at 8-km and 3-hour resolution.  HURSAT–B1
data files are in a Network Common Data Form
(NetCDF) format.  Each file is a snapshot of the storm
from one of the satellites.  Multiple NetCDF files are
possible when a storm is visible by two satellites at the
same time. In this study, we focus on Northern Atlantic
storms from 1978 – 2006.  For intensity estimation
different groups of storms are considered as training
and testing sets to prove robustness of proposed
technique.

Table 1: Detailed specification of Hursat data (Knapp
and Kossin 2007)

2.2 Data Mining

Data mining has attracted a great deal of attention
in the information industry due to availability of huge
amounts of data and the urgent need for changing such
data into useful knowledge. Every data mining system
contains of an iterative sequence of the following steps
(Han and Kamber 2006):

1. Data cleaning: Remove incomplete data (e.g.,
that has not complete history information to be
analyzed).

2. Data integration: All Northern Atlantic storms
from 1978–2006 are combined for further
analysis.

3. Data selection: For each entry the features that
described in section 2.3 are retrieved from
integrated data.  It includes 6, 12, 24 prior
intensities and the duration of each entry.  To
access the origin of the data, the NetCDF file
name of each entry is also saved.

4. Data transformation: Data are transformed into

matrix forms which are appropriate for data mining.
5. Data mining: Machine learning methods are

applied in order to extract an estimation of the
intensity of the query entry.  These methods are
described in section 2.4.

6. Estimation evaluation: Measure the estimator
accuracy.  Estimation accuracy is discussed in
section 4.

7. Knowledge presentation: Results are presented
to facilitate understanding of the mined
knowledge.  This step is covered in section 4.

It is important to mention that, classification and
estimation are two forms of data analysis that can be
used to extract models describing important data
classes or to estimate future data trends.  Our problem
to estimate the intensity of TC considered as prediction
of a continuous valued functions and it is different from
classification which predicts categorical discrete labels.

2.3 Features

In order to select appropriate features (that is,
predictors) for intensity estimation, a careful review of
the DT revealed a number of interesting correlations
between the T numbers (Table 2), the constraint on TC
wind speed, duration and prior intensity of the storm.
Figure 1 shows the step 8 of DT.  This step provides the
constraints on final T number in terms of duration, time
of the day and prior intensities. One of the important
features that strongly related to the intensity of the storm
is duration. For each snapshot of the storm, duration

T number Wind
speed (kt)

1 .0& 1.5 25
2.0 30
2.5 35
3.0 45
3.5 55
4.0 65
4.5 77
5.0 90
5.5 102
6.0 115
6.5 127
7 140

7.5 155
8 170

Table 2: Dvorak T numbers

Product Hursat-B1 HURSAT-AVHRR HURSAT-MW GridSat

Temporal span 1978 - 2009 1978 - 2009 1988 - 2009 1979 - 2009

Spatial span Storm-centric:
10.5° from center
for all global TCs

Storm - centric:
10.5° from storm
for all global TCs

Storm-centric:
10.5° from center
for all global TCs

Global

Temporal
resolution

3 hourly Varying
(6-12 hourly)

Varying
(6-12 hourly)

3 hourly

Gridding
resolution

8km 4km 8km 8km

Data source ISCCP B1 AVHRR GAC DMSP SSM/I ISCCP B1

Channels
available

IRWIN (11μm)
IRWVP (6.7μm)
(0.65μm)

All AVHRR
channels

All SSM/I
channels

IRWIN(11μm)
IRWVP(6.7μm)
(0.65μm)

Calibration Clim. – IRWIN,
ISCCP - IRWVP,

Climate calibrated Operational
calibration

Clim. – IRWIN,
ISCCP–IRWVP,

Yearly size (GB) < 6.5 40-60 4 200

Format NetCDF NetCDF NetCDF NetCDF

Current version 4.0 Beta Beta Beta

Imagery Movies BD Imagery Imagery Planned
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Figure 1: Step 8 of Dvorak technique (Dvorak 1984)

means the time elapsed between current (time of
intensity estimation) and the starting time of the storm.
For example constraint No. 1 states that for storm just
started, duration= 0, T# is 1 or 1.5.

The other important features that related directly to
intensity estimation are prior intensities of the storm up
to 24 hour before the estimation time.  For example,
constraints No. 3 and 4 (Figure 1) are directly related to
prior intensities of TC till estimation time.

Finally, 4 features including 6, 12, 24 hour prior
intensities and the duration were selected (after testing
all combinations of prior intensities) as the most

dominant features in intensity estimation.  These
features are extracted from the NetCDF files of the
ground truth data.  Figure 2 shows the extracted
features for sample query with 12 days duration from
storm Kate (2003).

Figure 2: Visualizing extracted features for sample
query with 12 days duration from starting point of the
storm Kate (2003)

2.4 Procedure for Intensity Estimation

Figure 3 illustrates the procedure for the proposed
technique.  First, all the data in the ground truth data
base are organized according to selected features.
Second, the features (6, 12, 24 prior intensities and the
duration) of each query entry (unknown intensity entry)
are extracted.  The third and the forth steps are used for
sorting similar entries based on duration and prior
intensities for a given query.  Since the units of the
features; duration (hour) and the intensities (kt) are

Figure 3: Block diagram of the proposed technique
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different. Similarity is defined in terms of Euclidian
distance between the query entry and all of the training
entries.  The Euclidian distance between two entries

},...,,{ 21 nxxxX  and },...,,{ 21 nyyyY  is

defined as:
22
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2
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In the third step, the data base is searched based on
similar duration. All entries in the ground truth data are
sorted in ascending order based on the computed
Euclidian distance between duration (in hours) of query
entry and entries from the ground truth data.  The entry
from the ground truth data with shortest distance (most
similar duration; shortest time) is set as the first entry.
In the fourth step, the current entries are sorted based
on the Euclidian distance between the prior intensities
(kt) of the query entry and the ground truth entries.
Fifth, we apply k-nearest neighbor algorithm to classify k
entries with shortest Euclidian distance.  For example, if
each entry is described by an n attributes (or features).
Each entry represents a point in an n-dimensional
space.  In this way, all of the entries are stored in an n-
dimensional space.  When presented with a query with
an unknown intensity, a k-nearest-neighbor classifier
searches the space for the k entries that are closest to
the unknown entry based on duration and prior
intensities.  These k entries are the k “nearest
neighbors” to the unknown query entry.  “Closeness” is
defined in terms of a metric Euclidean distance.  Sixth,
the average intensity value of the 10 nearest neighbors
is the estimated intensity of the query entry.  The
algorithm’s performance is affected by the choice of k.
If k is small, then the algorithm can be affected by noisy
points.  If k is too large then the nearest neighbors could
belong to different classes. Therefore, k=10 is selected
as an optimum value for k based on estimation accuracy
after several testing.

An example is provided to clarify our proposed
technique.  Consider the query entry is the snapshot of
the storm Rita for a given date (2005.09.19) at 21:00
UTC with real intensity of 60 kt.  Figure 4 shows how
Rita was evolved and the corresponding snapshot query
entry.  The goal is to estimate the intensity
corresponding to the given query entry at the given date
and time.  Assuming that duration and the 6, 12, and 24
hours prior intensities for the query entry are 42 hour,
and 58, 53, 40 kt respectively.  For k=1, the nearest
neighbor storm snapshot in the ground truth data entries

is the snapshot of storm Lili (1996.10.17) at 9:00 UTC.
Lili’s current and 6, 12, 24 hour prior intensities were 63
kt and 58, 53, 40 kt respectively with 66 hour duration
as shown in Figure 5.  Finally the estimated intensity
value is 63 kt which has negligible error of 3 kt compare
to real intensity of 60 kt.

Figure 4: Query entry selected from Rita storm (2005)

Figure 5: Nearest neighbor from Lili storm (1996)

3. Spatial data processing

The Dvorak technique formulation is based on
“Tropical cyclones have characteristic evolutions of
cloud pattern that correspond to stages of development
and certain intensities” (Dvorak 1984).  In this paper we
present preliminary results using image processing and
pattern recognition techniques to investigate the relation
between TC intensity and TC satellite images.  And
remove the human subjectivity of the processes.

A general technique that has been applied to many
tasks in image processing is the 2 dimensional discrete
wavelet transform (DWT2), Stark (2005).  An important
aspect of the DWT2 is its ability to compute and use
data in compressed parameters which are often called
features.  The TC satellite images can be compressed
into fewer parameters describing the condition of the
TC.  It is particularly important to use a smaller set of
features for recognition.  The DWT2 is capable of
representing images in different resolutions by dilating
and compressing its basis functions. The compressed
functions hold fast activities while the dilated functions
adjust to slow activities.  DWT2 works like a band pass
filter and can be applied to an image at several levels.
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Each level decomposes the input image into a low
frequency component (approximations-cA) and a high
frequency component (vertical-cV, horizontal-cH and
diagonal-cD) of the initial image. Sample decomposition
is shown in Figure 6. The choice of a wavelet function
usually application dependent and the criteria used is
based on maximum accuracy.

In this study, Daubechies wavelet function of level 1
is used. The smoothing feature of the Daubechies
wavelet of order 5 (db5) made it more suitable to detect
changes in the satellite image.  The wavelet coefficients
are computed using the MATLAB software package.
Ignoring the high frequency (detail) components (cV, cH
and cD), approximation wavelet coefficients of the input
image is used as the feature vector representing the
input images.  Each satellite image has dimension of
301 by 301 (90601 discrete data points) and only using
the approximation wavelet component has reduced the
dimension to 24025 (26.5% of input image data points).

Figure 6: Sample DWT2 of a satellite image, the
approximation component is selected.

The procedure for classification of the satellite
image is shown in Figure 7.  The features of query
image are extracted and compared with ground truth
data features based on Euclidean distance. The k-
nearest neighbor algorithm is used to assign the nearest
neighbor (k=1) class to query image.

For validation process, ground truth data and
testing data are selected randomly from images in
HURSAT-B1 data during 1995-2005 from different
classes defined base on Saffir-Simpson hurricane scale
(Table 3).  The 6 classes are Tropical depression (TD)
or Tropical storm (TS) with intensities less than Cat1
plus Cat 1 through Cat5.  Table 4 shows the number of

entries chosen for validation process with 80% and 20%
ratios as Ground truth data and testing data
respectively.

Table 5 shows the tabulated result in a confusion
matrix. The average accuracy of classification result is
71%.  First, in standard TC intensity classification, the
intensity accuracy is given in terms of knots.  Therefore,

Figure 7: Block diagram of satellite image classification

it is hard to compare the results.  Second some spill
over between categories (e.g., a storm that was just
above the threshold of Cat 3 can be classified as Cat 2)
may exist, the error in terms of category is 1-level
difference, but the wind speed difference in knots may
be small.  Third, some large outliers exist.  For instance,
the Cat 0 column has interpreted 1% of those storms as
Cat 5 (2 images) and 5.5% as Cat 4 (11 images). That
is a pretty significant difference from Cat 0.  Temporal
constraints can be used as well to improve the
accuracy.  For instance, knowing what the category was
just an image or two prior can help limit the miss-
classifications.

However, when classes are combined in such a
way that class TS/TD remain the same as before,
classes 1 and 2 are combined as the second class and
classes 3, 4,5 are combined as the third class.  Then,
the average accuracy of the classification has improved
and is 81.3% (Table 6).  These results show that the
classification technique works better at high wind
speeds (second and third classes) than the TS/TD
class.  As anticipated the results indicate that a
relationship exists between the images and intensity.
Increasing the accuracy of the image classification is the
subject of our future work.
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4. Validation and Results of Temporal Analysis

Since estimators return a continuous value rather
than a categorical label, it is difficult to conclude exactly
whether the predicted values are correct or not. Instead
of focusing on whether the estimated values are exact
match with the real-values, the accuracy is measured in
terms of how far off is the predicted values from the

Category Wind speed
(mph)

Five >= 156
Four 131-155
Three 111-130
Two 96-110
One 74-95

Table 3: Saffir-Simpson Hurricane scale

Class TS/TD 1 2 3 4 5
Ground

truth
800 800 336 291 244 60

Testing 200 200 84 73 61 15
Total 1000 1000 420 364 305 75

Table 4: Number of training and testing images from
Northern Atlantic storms 1995 – 2005

Class TS/TD
%

Cat1
%

Cat2
%

Cat3
%

Cat4
%

Cat5
%

TS/TD 71 7.5 2.4 0 0 0
Cat1 17.5 77.5 20.2 6.8 3.3 0
Cat2 2.5 8.5 59.5 13.7 0 0
Cat3 2.5 1.5 11.9 64.4 9.8 0
Cat4 5.5 5 6.0 15.1 83.6 33.3
Cat5 1 0 0 0 3.3 66.7

Table 5: Confusion matrix (average accuracy 71%)

Class TS/TD C1/C2 C3
TS/TD 71% 6% 0%
C1/C2 20% 84% 11%

C3(Cat3, 4,5) 9% 10% 89%

Table 6: Combined results

reported values. Loss functions measure the error
among actual values and the estimated values.  The
most common loss functions are mean absolute error
(MAE) and root mean square error (RMSE) (Han and
Kamber 2006).  Several tests are done to validate the
proposed technique.

In order to provide a quantitative comparison with
DT for intensity error estimation the data used are, from
1978 – 1996 and 2004 – 2006 storms as the ground
truth data, and from 1997-2003 as a testing data.  Table
7 provides the number of data corresponding to different
T numbers used for the ground truth and testing data.
The proportion of the training and testing data in Table 7
are about 70% and 30% respectively.  The MAE of
intensity estimation based on DT is shown in Figure 8
(Velden et al. 2006a) with the same period as testing
data.  This Figure shows that, 50% of the Dvorak
intensity estimates are within 5 kt of the best track
intensity, 75% are within 12 kt and 90% are within 18 kt.
The distribution of intensity estimation errors of the
proposed technique, in Figure 9, shows that 50% of the
estimates have an MAE less than 2.4 kt, 75% are within

(a)

(b)

Table 7: (a) Classified Ground truth data from North
Atlantic storms 1978-1996 & 2004 – 2006 storms, total
is 13791 entries (b) Classified Query (testing) data from
North Atlantic storms 1997 – 2003 storms total is 5619
entries.

4.4 kt and 90% are within 7.5 kt.  It clearly, shows that
the proposed technique has an average improvement in
MAE intensity estimation of 55% compared to DT.

For statistical justification of the proposed technique
several tests are done using k-Fold Cross-Validation
and compared it with DT.  The initial data are partitioned
into k mutually exclusive subsets or folds, S1, S2, …, Sk.
Since the time interval consists of 29 years (1978 –
2006) then k=29 and each subset considered as storms
occurred during each year from 1978 – 2006.  The
entire testing is performed k times. In iteration (test) j,
partition Sj is reserved as the test set, and the remaining

Class T1 T1.5 T2 T2.5 T3 T3.5 T4 T4.5 T5 T5.5 T6 T6.5 T7 T7.5 T8
Total 1759 16 1854 1323 2474 1759 1530 1043 964 343 363 203 105 49 6

Class T1 T1.5 T2 T2.5 T3 T3.5 T4 T4.5 T5 T5.5 T6 T6.5 T7 T7.5 T8
Total 649 5 652 606 951 788 632 398 420 172 196 82 57 11 0
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partitions are collectively used as ground truth data. For
example, in the first iteration, subsets S2, ..., Sk

collectively serve as the ground truth set, and S1 is used
as test data; the process is repeated similarly.  Note
that, each sample is used the same number of times as
ground truth data and once for testing data. The error
estimate is computed as the total loss from the k
iterations divided by the total number of initial subsets.
Figure 10 shows the results of the proposed method
and DT for BIAS, MAE, and RMSE. The term BIAS
means the average differences between estimated
values and the best track values.  The Dvorak intensity
estimates in Figure 10 d, e, f are from the National
Environmental Satellite, Data, and Information Service’s
(NESDIS) Satellite Analysis Branch (SAB) and the
Tropical Analysis and Forecast Branch (TAFB), which is
part of the Tropical Prediction Center/National Hurricane
Center (Knaff et al. 2010).  Although the data are used
for verification of proposed technique and the one used
for DT shown in Figure 10 are not the same, but it gives
an overall view of the accuracy of each technique.
Mean Bias values of the proposed technique are almost

Figure 8: Distribution of Dvorak classification errors
(1997 - 2003) in the Atlantic basin (Velden et al. 2006a)

zero but for DT the Bias values changes from -8 to 4 kt.
MAEs and RMSEs of DT during 1989 - 2008, are with
mean values of approximately 8 and 11 kt respectively.
But MAEs and RMSEs of proposed technique during
1978 – 2006 are with mean values of approximately 3
and 5 kt respectively.  The results show that proposed
technique has greater accuracy than DT.

Biases and errors can be showed as a function of
intensity to study the underestimate/overestimates and
variation of errors in different intensities.  The results of
validation are compiled in overlapping bins with
endpoints that correspond to the T number versus
intensity as in Table 1.  For instance, the first and

second bins have intensity ranges of 20 – 35 and 25 –
45 kt, respectively.  The last bin extends from 127 to
170 kt as one bin (Knaff et al. 2010).  Figure 11 shows
the biases, MAEs, and RMSEs associated with the
proposed technique and DT intensity estimates.  The
biases show that the DT underestimates intensities
when TCs have intensities between 35 and 55 kt and
greater than 125 kt.  On the other hand, overestimation
of intensities occurs between 75 and 105 kt.  However,
for the proposed technique the underestimates occur
especially for intensities greater than 115 kt.  The MAEs
and RMSEs shown in Figure 11 are lower for weak
storms and larger for the higher intensities which are
similar for both techniques.

Studying the effect of noise is important because
measurements are often corrupted and tend to
propagate noise on estimations.  We considered noise
with a Gaussian distribution having a zero mean with 5
kt and 6 hour standard deviations for prior intensities
and duration, respectively. We add Gaussian noise to
all features and then, the k-Fold Cross-Validation

Figure 9: Distribution of proposed technique
classification errors (1997 - 2003) in the Atlantic basin

are performed with new values. Figure 12 indicates the
new results. The biases are not changed since the
mean of the noise is zero.  However, the errors (MAE
and RMSE) are both increased.  In spite of noise, the
average RMSE of the proposed technique is around 8.2
kt which is still less than Dvorak error of 11.7 kt.

5. Discussion and future work

In summary, we hypothesize that discovering
unknown regularities and abnormalities that may exist in
the large group of past observations could help human
experts interpret TC intensity changes from various
points of view. Our goal is to provide a data mining tool
that increases the ability of human experts to analyze
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 10: K-Fold Cross–Validation for North Atlantic base in from 1978 – 2006, (a),(b), (c)Bias, MAE, RMSE of
proposed technique (d), (e), (f) DT results (Knaff et al. 2010), the number of cases is provided in the bottom panel.
(Satellite Analysis Branch (SAB), Tropical Analysis and Forecast Branch (TAFB))
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 11: K-Fold Cross –Validation for North Atlantic basin from 1978–2006 showed as a function of intensity.
(a),(b),(c) Bias, MAE, RMSE of proposed technique (d), (e), (f) Bias, MAE, RMSE of DT (Knaff et al. 2010).  The
number of cases is provided in the bottom panel. (Satellite Analysis Branch (SAB) Tropical Analysis and Forecast
Branch (TAFB)).
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(a)

(b)

(c)

Figure 12: Studying the effect of the noise (a) Bias (b)
MAE (c) RMSE.  The number of cases is provided in the
bottom panel.

huge amount of historical data for TC intensity
estimation.

Temporal information provides a priori estimates of
TC intensity before using any satellite analysis.  The
temporal analysis uses the duration, 6, 12 and 24 hours
prior intensities of TC as predictors of the expected
intensity. The algorithm used 70% and 30% of the data
as the ground truth data and verification data
respectively.  Instead of regression techniques, the 10
closest analogs (determined using a k-nearest-neighbor
(K-NN) algorithm) are averaged to estimate the
intensity.  Such an estimate has a 4.8 kt RMSE (50% of
points are within 2.4 kt).  Several tests were
implemented to statistically justify the proposed
algorithm using k-Fold Cross-Validation.  The resulting
average RMSE is 4.6 kt.  We considered noise as
having a zero mean Gaussian distribution with 5 kt and
6 hour standard deviations for prior intensities and
duration, respectively to study its’ impact.  The results
indicate that the average RMSE is around 8.2 kt.

The proposed technique has the potential to
provide new temporal constraints on satellite analyses
(e.g., the Dvorak technique).  The current analysis has
the potential to decrease the Dvorak noise.  Once
spatial analysis of image features is included, the noise
will likely be less. For example, our current spatial
technique analyzes 71% of storms at the correct Saffir-
Simpson category.  The next step in algorithm
development is to combine the temporal analysis with
the satellite image analysis.
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