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1. INTRODUCTION

Atmospheric motions are represented by a series
of equations including the momentum equation.
Because the accurate form of these equations
is so complex, it is often necessary to use their
approximated forms. In the hydrostatic primitive
equations (HPEs), which is most frequently used
in numerical models, the shallow atmosphere ap-
proximation is used, in which the practical thick-
ness of the atmosphere is acknowledged to be
much thinner than the mean radius of the solid
earth (a ≈ 6370 km). When using this approxima-
tion, however, the “traditional approximation” (TA)
must be used; in the momentum equations, two
cosine Coriolis terms originated from the merid-
ional component of the earth’s rotation vector
(hereafter, nontraditional Coriolis terms or NCTs)
and some metric terms are eliminated so as not to
violate any fundamental physical principles, such
as the conservative law of angular momentum
(Gerkema et al. 2008).

However, some studies have suggested that
near the equator where the cosine factor is large,
the TA may not be appropriate (e.g., White and
Bromley 1995, hereafter, WB95). WB95 indicated
that since diabatic heating due to cumulus con-
vection involves air mass ascent in the tropics,
the NCT associated with vertical motion in the
zonal momentum equation may become too large
to be neglected. However, no published study
has determined the effect of the NCTs interacting
with diabatic heating in the cumulus-active trop-
ics. Thus, in this study, we quantitatively inves-
tigate the effect of the NCTs on large-scale mo-
tions. As its first step, we treat motions forced by
local positive-only diabatic heating mimicking cu-
mulus heating near the equator.

2. GOVERNING EQUATIONS

We use the three-dimensional quasihydrostatic
equations (QHEs) formulated by WB95. The
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equations used are approximated on an equato-
rial β-plane, and are linearized, i.e.,
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where symbols are conventional except that Q̇
is diabatic heating, π ≡ (p/ps)

κ Exner function
(ps ≡ 1000 hPa is surface pressure of the basic
state), Ω the angular speed of the earth’s rota-
tion, γ the Rayleigh damping/Newtonian cooling
coefficient, K the horizontal diffusion coefficient,
and H a scale height. The overbars and primes
indeicate basic states depending on z only and
perturbations, respectively. Since no basic flow
is assumed, all the velocity fields are perturbed
quantities. We assume that the temperature of
the basic state is Ts (= 300 K) at the surface, hav-
ing a constant lapse rate Γ below the altitude of
the tropopause zh (= 15 km) and being constant
above zh.

In the QHEs, the spherical geopotential approx-
imation is assumed and the vertical acceleration
term in the vertical momentum equation is elim-
inated. This allows w to be diagnostically de-
termined. The NCTs are retained in the zonal
momentum equation (1) and the quasihydrostatic
equation (3). Note that even for the linearized
QHEs without basic flow, it is impossible to sep-
arate the vertical and horizontal structure equa-
tions (Gerkema et a. 2008). Gill and Phlips (1986)
demonstrated that the nonlinear effect of the re-
sponse to diabatic heating is weak enough to re-
tain the pattern obtained by using the linearized
HPEs (Gill 1980).
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3. NUMERICAL CALCULATIONS

Prescribed forcing Q̇(x, y, z, t) is supposed to
move eastward with a constant frequency ω. The
equatorially symmetric and local positive-only di-
abatic heating mimicking cumulus convection is
given by

Q̇

Cp
≡ Qa cos

πy

Hy
cos

πx

Hx
sin

πz

zh
ez/2H e−iωt (7)

when |y| < Hy/2, |x| < Hx/2 and 0 < z < zh,
otherwise Q̇/Cp ≡ 0. Here Hx and Hy are the
zonal and meridional lengths of the heating, re-
spectively. The factor exp (z/2H) denotes the
effect due to the density stratification of the ba-
sic state. Qa is assigned a value which gives
10 K d−1 at its maximum. Then, by replacing ∂/∂t
to −iω in (1)–(6), the equations become “indepen-
dent” of time, as all the variables responding to
the forcing have the same time dependency.

The boundary condition in the zonal direction
is cyclic. The equatorial symmetry is assumed
in the meridional direction since equatorially sym-
metric forcing is used. The boundary condition
in the meridional direction is then given by v =
0, ∂u/∂y = ∂π/∂y = 0 at y = 0 (equator) and Y
(northern boundary). The boundary condition in
the vertical direction is w = 0 at z = 0 and π = 0
at z = zt (model top). The model domain is 2πa
in the zonal direction, 4000 km (= Y ) northward
from the equator in the meridional direction, and
45.5 km (= zt) from the surface in the vertical di-
rection. The respective grid intervals of the zonal,
meridional, and vertical directions are ∆x ≈ 156
km (256 grids corresponding to the maximum
zonal wavenumber Km = 128 for a spectral ex-
pansion in the zonal direction), ∆y = 125 km and
∆z = 1 km. The time constant of γ is set at
2 days from the surface to 1 km height, and 10
days between 1 and 30 km; above 30 km, height-
dependent values vary linearly, reaching a value
of 1 day at zt. The time constant of K is 18 hours
at the maximum wavenumber.

As shown below, the meridionally localized forc-
ing is crucial in determining the effects of the
NCTs. Therefore, results of two numerical calcu-
lations with different horizontal scales of the equa-
torially symmetric heating (i.e., Hx and Hy) are
shown and compared here: (i) both Hx and Hy

are 2000 km (hereafter, SQuare experiment; SQ),
and (ii) Hx is 2000 km but Hy is 1000 km (here-
after, REctangular experiment; RE). We consider
eastward moving forcing with a 50-day period,
that is, ω = 2π/(50 d), as an intraseasonal fre-
quency. Results with and without the NCTs have

Figure 1. Exner function perturbation off-value (shade) and
on-value (contour), horizontal wind off-value (vector), and di-
abatic heating (green contour) at 8.5 km height (top) and 2.5
km height (bottom) in each experiment. (a) and (c) represent
SQ, and (b) and (d) represent RE. The wind scale is indicated
in the bottom right corner of each panel, which represents
5 m s−1. The vertical and horizontal axes denote latitude
and longitude, respectively. The Exner function perturbation
is shaded and contoured every 2 × 10−5 for (a) and (c), and
1× 10−5 for (b) and (d). The contour interval of diabatic heat-
ing is 2 K d−1.

been determined and comparisons made.
Hereafter, perturbations obtained from the

equations with and without the NCTs are referred
to as on-value and off-value, respectively. The term
contribution is defined as the subtraction of the off-
value from the on-value, which then signifies the
effect of the NCTs. As indicated by (1)–(6), the
off-value is the solution of the HPEs. The term
contribution can therefore be considered to refer
to the effects which are omitted by the TA in the
HPEs.

4. RESULTS

Figure 1 shows the horizontal patterns in SQ and
RE at 8.5 km and 2.5 km height. Off- and on-
values of Exner function perturbations, off-values
of horizontal wind, and the forcing are presented.
From the equatorial symmetry, patterns in the
Southern Hemisphere are also shown for the con-
venience of the reader. Results relating to the off-
values confirm the east-west asymmetric solution
derived by Gill (1980), where a Rossby (Kelvin)
response occurs at the west (east) side of the
forcing. Similar structures are obtained for on-
values with the NCTs (see the contours in Fig.
1).

Table 1 gives the ratio of the (absolute) max-
imum of the contribution to the (absolute) maxi-
mum of the off-value for each variable in SQ and
RE. Because this ratio is calculated from the con-
tribution and off-value maxima, and the point of
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Table 1. Ratios of the absolute maximum of contributions
to the absolute maximum of off-values of each variable
(π, u, v, w, vertical vorticity ζ, horizontal divergence D, θ, ρ)
in SQ and RE. The units are percentages (%). The sign of in-
equality, <, indicates that the ratio is smaller than the value
presented.

π u v w ζ D θ ρ
SQ 6.6 3.3 8.8 <0.1 5.1 0.6 3.5 3.6
RE 11.8 10.8 19.7 <0.1 17.3 1.4 4.1 4.0

the maximum contribution does not generally co-
incide with that of the maximum off-value, the ratio
of the contribution to the off-value at the point of
the maximum contribution must be larger than the
ratio in Table 1.

This table demonstrates that the contributions
to vertical velocity w and horizontal divergence D
are small in both experiments. It also confirms
that contributions of these two variables are small
at any point (not shown). However, the NCTs
largely affect zonal velocity u, meridional velocity
v, vertical vorticity ζ, and perturbations of pres-
sure π, potential temperature θ, and density ρ.
Additionally, this table also indicates that the ra-
tios of the contributions to π, ζ, u, and v are much
larger in RE than in SQ. Although the values for θ
and ρ in both experiments and for u in SQ appear
to be small, contributions to them cannot be ne-
glected because larger contributions than these
are identified at each point.

The characteristics of the contribution to π and
ζ are shown in Figs. 2 and 3, respectively. Note
that these figures indicate the results in SQ, but
similar structures are obtained in RE. The contri-
bution to π (ζ) is positive (negative) at the west
side and negative (positive) at the east side of the
heating. Opposite from the off-values, the con-
tributions have an equivalent barotropic structure
standing vertically, and the altitude of the maxi-
mum contributions coincides with that of the forc-
ing (Figs. 2a and 3a). As a result, the NCTs
weaken the cyclonic pressure, and also vortic-
ity, at lower levels and strengthen the anticyclonic
pressure, and vorticity, at upper levels on the west
side of the forcing (Figs. 2a and 3a).

It is also interesting that the absolute values
of the contributions are much larger at the west
side of the heating than at the east side. In Figs.
2b and 3b, from the comparison between the off-
values (contour) and contributions (shade), the
peak of the contributions located at the west side
of the heating nearly coincides with that of the off-
values.

On the contrary, the contributions to θ and ρ do
not represent the equivalent barotropic structure
(Fig. 4), and do not exhibit the defference be-
tween two experiments (Table 1).

Figure 2. (a) Longitude-height cross section at 0.6◦N and (b)
horizontal section at 8.5 km height for the contribution to the
Exner function perturbation (shade) and its off-value (contour;
solid line: positive, dashed line: negative) in SQ. The green
line denotes the diabatic heating (contour interval: 2 K d−1).

Figure 3. Same as Fig. 2 except for the vertical vorticity. Here,
(a) is a cross section at 6.9◦N.

5. DISCUSSION AND CONCLUSIONS

By giving a frequency ω to all the variables, the lin-
earized equations (1)–(6) are rewritten as equa-
tions for contributions by subtracting off-values
from on-values. Subscripts c and on denote con-
tribution and on-value, respectively. Horizontal
diffusion terms in these equations are so small
that they can be neglected without any annota-
tion in the following consideration. The momen-
tum equations for contributions then become

−iωuc = βyvc − 2Ωwon − Cpθ̄
∂πc
∂x

− γuc, (8)

−iωvc = −βyuc − Cpθ̄
∂πc
∂y

− γvc, (9)

Cpθ̄
∂πc
∂z

− g

θ̄
θc = 2Ωuon. (10)

On-values, won and uon, appear in (8) and (10),
respectively.

From ∂(9)/∂x − ∂(8)/∂y, the equation for the
contribution to vertical vorticity ζc can be obtained
as

(−iω + γ) ζc = −βvc − βyDc + 2Ω
∂won

∂y
. (11)

Because the contribution to horizontal divergence
is small enough to be neglected, we can de-
fine the contribution to streamfunction ψc to be
uc = −∂ψc/∂y and vc = ∂ψc/∂x with a good ap-
proximation. The equation can then be rewritten
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Figure 4. Same as Figs. 2a except for (a) the potential tem-
perature perturbation and (b) the density perturbation.

as [
β
∂

∂x
+ (γ − iω)∇2

]
ψc ≈ 2Ω

∂won

∂y
. (12)

Equation (12) gives a physical interpretation of
why the NCTs generate the contribution to ver-
tical vorticity shown in Fig. 3. On the equato-
rial β-plane approximation, the factor 2Ω on the
right-hand-side is the meridional component of
the planetary vorticity (i.e., cosine Coriolis com-
ponent, or the planetary vorticity vector itself over
the equator). This equation implies that the plan-
etary vorticity is vertically tilted by ∂won/∂y, gen-
erating the vertical component of relative vorticity
(see Fig. 5). In the Northern Hemisphere where
∂won/∂y < 0, negative vorticity is produced. If
there were only a γ term on the left-hand-side,
the vorticity produced would attain a maximum at
the longitude where won is at its maximum. How-
ever, this negative vorticity is shifted to the west
side of the heating by the β term. The −iω term
makes the contribution become large in the west
because this term physically implies the phase lag
of the response to forcing, and the forcing is as-
sumed to move eastward (ω > 0). These three
terms interact to place the negative vorticity at
the west side as a Rossby response. That is, the
east-west asymmetry of ζc, and therefore of ψc, is
produced.

It is easily understood that ζc, ψc, uc, and vc
have the equivalent barotropic structure. These
distributions are primarily determined by the
strength of the tilting, 2Ω(∂won/∂y). Since the
structure of won is arranged vertically, these con-
tributions also have the same vertical structure.
Their amplitude maxima occur in the middle level
of the troposphere corresponding to the altitude
of the won maximum.

Among the variables having a large effect on
the NCTs, the contributions to π, u, v, and ζ
become larger when there is a larger meridional
gradient of the heating, i.e., in RE. Equation

Figure 5. Schematic diagram of the tilting of the planetary
vorticity. The cylinder and upward thick arrows respectively
denote the vortex tube, which has the planetary vorticity, and
vertical motion. In the Northern (Southern) Hemisphere, the
planetary vorticity vector is tilted downward (upward) by the
negative (positive) meridional gradient of the vertical velocity.

(12) demonstrates that the larger the meridional
gradient of heating (∂Q̇/∂y ∼ ∂won/∂y) is, the
larger the contributions become. As stated above,
∂won/∂y determines the strength of tilting of the
horizontal planetary vorticity so that ζc becomes
larger at larger gradients of heating. Furthermore,
both uc and vc being closely related to ζc (ψc) also
have a strong dependence on the meridional gra-
dient of heating. Since the horizontal winds tend
to adjust the pressure, πc also shows the same
character.

In summary, the effect of the NCTs near dia-
batic heating appears as the tilting of the plane-
tary vorticity due to the meridional gradient of the
vertical velocity. The vertical vorticity produced by
the tilting adjusts the pressure. Thus, vertical vor-
ticity (horizontal winds) and pressure perturbation
are strogly affected by the NCTs. Contributions
to them have the equivalent barotropic and east-
west asymmetric structure. In addition, contribu-
tions to them become large when the meridional
gradient of heating is large. As future work, we will
investigate the effect of the NCTs using a time-
evelution model.
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