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1. INTRODUCTION 

A better prediction of future hurricane activity, in 

general, leads to better estimation of future insured 

catastrophe losses. Catastrophe models employ 

complex mathematical techniques to generate forecasts 

of both loss frequency and severity. Even with the 

availability of powerful computers, these applications 

(mathematical models) can be time consuming and 

quite expensive. However, no matter how reliable and 

intelligent these individual prediction models are, they 

are subject to inherent and epistemic uncertainty that 

has a significant impact on the estimation of event 

losses. As Powers (2006) indicates, the problem with 

forecasting catastrophes is the absence of extensive 

data validation, given the short length of record with 

high-quality data.  

In the first part of this study we consider one of the 

most publicly discussed forecasting models introduced 

by Gray (1984) and compare it to a simple forecasting 

alternative (similar to the study done by Powers, 2006). 

Gray (1984) generated a complex methodological and 

statistical model of global weather patterns to predict the 

number of named tropical storms and hurricanes 

originated in the Atlantic Basin. Prior to the start of each 

Atlantic Hurricane Season, Gray’s model makes 

seasonal forecasts in early December, April, June and 

August (As of December 2011, Colorado State 

University no longer issues December hurricane 

forecasts for the upcoming Atlantic Hurricane Season). 

For the purpose of this study, we only consider and 

compare the August prediction numbers from Gray’s 

analysis for the time interval of 1990 to 2011. In our 

simple alternative, the historical hurricane record from 

1900 to 1989 is taken from the NHC data-set and is 

employed to predict the hurricane activity for years 

between 1990 and 2011 using technical analysis. An 

ARIMA technique is used to model the behavior of the 

Atlantic hurricanes. As shown in Figure 1, the hurricane 

frequency series (1900 – 2011) is nonstationary, where 

the mean is slightly increasing over time. 
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Autocorrelation functions are used to specify the orders 

of the ARIMA model. The results of this analysis are 

presented in section 3.  

Over the last 100 years, Principal Component 

Analysis (PCA) has been employed in many different 

fields of study (Daneshvaran and Morden, 1998, 

Ramsay 1988, Holmes 1990) to identify the dominant 

variables and mechanisms that describe and control the 

structure and processes underlying a specific data-set. 

This method has been widely used in meteorological 

and oceanic data analysis (Anderson and Gyakum 

1989, Lee and Cornillon 1995, Xie et al. 2005). 

Oftentimes, the expectation is that a few underlying 

variables are able to express essential structure 

embedded within the original data and by specifying 

those variables, we could achieve important insights. 

 
Figure 1: North Atlantic Hurricane Frequency 

The advantage of PCA is that it describes the data 

variability in terms of orthogonal functions or mode 

shapes. If there are substantial correlations among the 

variables in the original data and the available 

information is redundant, PCA identifies the dominant 

mode shapes and reduces a data-set containing a large 

number of variables to a smaller set of data which 

represents a large fraction of the variability contained in 

the real phenomenon. The remarkable property of 

principal components (mode shapes) is that they are 

uncorrelated.  

Global climate patterns and atmospheric conditions 

are linked to the vitality of hurricanes and they are used 

in empirical models to forecast hurricane activity several 

months in advance (Elsner and Schmertmann 1993, 

Gray et al. 1992). An extensive number of studies have 
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been focused on the effect of one or more of these 

climate factors (Hoyos et al. 2006, Mann and Emanuel 

2006, Webster et al. 2005, Trenberth 2005, Godenberg 

et al. 2001, and Klotzbach 2006). In the second part of 

this work, anomalies associated with six climate indices 

obtained from the National Oceanic and Atmospheric 

Administration (NOAA) are examined in an orthogonal 

space using PCA. Depending on the degree of the 

redundancy, the variances of the orthogonal system 

indicate the order of contribution of each mode shape to 

the total response. The minimum number of modes, 

without discarding important information carried in the 

original data, is used to construct a multiple linear 

regression model to predict the annual number of 

Atlantic hurricanes.  

2. DATA 

The data used in this analysis is briefly discussed in 

the following section. The Atlantic hurricanes’ data are 

used in our analysis came from the HURDAT data-set 

(Jarvinen et al. 1984 and Jarrell et al. 1992). For the first 

part of the paper, hurricane records between 1900 and 

2011 are used. In the second part, climate indices from 

1951 to 2010 were obtained from the NOAA’s Earth 

System Research Laboratory, Physical Sciences 

Division. This information is available at 

http://www.esrl.noaa.gov/psd/data/climateindices/list/.  

Atlantic Meridional Mode (AMM) is the measure of 

sea surface temperatures and zonal and meridional 

components of the 10-meter wind field over the region 

21S-32N and 74W-15E of the Atlantic Ocean.  

Atlantic Multidecadal Oscillation (AMO) is a 

weighted average of sea surface temperatures in the 

North Atlantic, roughly from 0 to 70N.  

El Niño - Southern Oscillation (ENSO) is the cycle 

of the year-to-year variations in sea surface 

temperatures, convective rainfall, surface air pressure, 

and atmospheric circulation that occur across the 

equatorial Pacific Ocean.  El Niño and La Niña 

represent warm (positive) and cool (negative) extremes, 

respectively, in the ENSO cycle.  ENSO directly 

influences the Atlantic hurricane season based on the 

changes in the vertical wind shear that accompanies 

ENSO phases.  

North Atlantic Oscillation (NAO) is a measure of the 

pressure anomaly over the North Atlantic. The NAO 

loading pattern projection to the daily anomaly 500 

millibar height field over 0-90°N is used to obtain the 

NAO Index. The negative phase of the NAO reflects 

above-normal heights and pressure across the high 

latitudes of the North Atlantic and below-normal heights 

and pressure over the central North Atlantic, the eastern 

United States and Western Europe. The positive phase 

of the NAO reflects an opposite pattern of height and 

pressure anomalies over these regions.  

Tropical North Atlantic (TNA) is the anomaly of the 

average of the monthly sea surface temperatures from 

5.5N to 23.5N and 15W to 57.5W of the Atlantic Ocean. 

 Caribbean SST Index (CAR) analyzes SST 

anomalies averaged over the Caribbean. These 

anomalies were smoothed by three months running 

mean procedure and projected onto 20 leading 

empirical orthogonal functions. In the next two sections 

of this paper, we focus on the analysis of these data. 

3. AUTOREGRESSIVE INTEGRATED MOVING 

AVERAGE (ARIMA) 

Figure 1 suggests that the mean of the Atlantic 

hurricane time series indicates a nonstationary 

behavior. The stationarity of a time series can also be 

interpreted based on an autocorrelation plot. 

Autocorrelation is the correlation of a data set with itself, 

lagged by 1, 2 or more periods. Autocorrelation function 

(ACF) is a set of autocorrelations with lags        . If 

the autocorrelation has a moderately high correlation for 

several time lags and it gradually decreases, the plot 

suggests that the time series is nonstationary. However, 

the autocorrelation plot of a stationary data drops to 

zero relatively quickly.  

Based on the observation from Figure 2, ACF 

shows a significant correlation in lag 1 and drops quickly 

after that time. Although the hurricane frequency (1900 

– 2011) in Figure 1 indicates that the time series is 

nonstationary, the behavior of ACF suggests that the 

time series is white noise and is reasonably stationary.  

 
Figure 2: ACF and PACF of Atlantic hurricanes (original 

data) time series 

Partial autocorrelation function (PACF) is a 

conditional correlation between two variables (   and 

    ) when the effect of other time lags are removed 

http://www.esrl.noaa.gov/psd/data/climateindices/list/


(Makridakis et al., 1998). PACF could determine the 

appropriate order of autoregressive in the ARIMA 

model. PACF in Figure 2 shows that the correlation 

measurements lie within the 95% confidence interval 

and suggests that the order of autoregressive is zero, 

     . However, Akaike information criterion (AIC) – a 

measure of the relative goodness of fit of a statistical 

model (Makridakis et al., 1998) – identifies       as a 

better model compared to      . Given a set of 

candidate models for the data, the preferred model is 

the one with the minimum AIC value. 

The pattern of ACF indicates that       is an 

appropriate model. Therefore, based on ACF and PACF 

patterns              can be a good fit to the data-set. 

Figure 1 suggests using first order difference to account 

for nonstationarity. Therefore,              was also 

considered as an appropriate model to be fitted to the 

original data. Our analysis shows that the              

has a smaller log-likelihood and AIC compared to 

            . The three-parameter equation for 

             is as follows: 

                                  

   denotes the number of hurricanes in year t,    is 

the estimated residual at year t, and c, θ, and φ are the 

three parameters of the model that must be re-

estimated as the number of hurricanes of each 

successive year becomes available. Since a small 

difference (2 or less) in the AIC value is not substantial, 

using              suggests a better fitted model to 

the same data-set. Table 1 presents a comparison of 

             with Gray’s forecast and the actual 

number of Atlantic hurricanes from NHC records.  

Estimation of              parameters are done 

based on two different assumptions: 1) using all of the 

data from 1900 to 1989 and 2) separating warm phase 

(1942 – 1964) and cool phase (1965 – 1989) using 

AMO Index. The warm/cool phase intervals are defined 

based on analysis from Elsner et al. (2000).  

Comparing the results of the first assumption and 

Gray’s forecast; for each year that both forecast values 

are not equally distant from the observed value, the 

forecast value which is closest to observed value is 

highlighted. Considering the highlighted years it can be 

seen that, out of 19 years, 16 years Gray’s forecasts 

show a better estimate of the hurricane activity than the 

ARIMA model. This suggests that a forecasting 

methodology which integrates meteorological impacts 

better captures the real phenomenon. It must be noted 

that engaging atmospheric conditions and increasing 

the number of explanatory variables in a forecasting 

model will increase the complexity of the model. If we 

compare the results from the first and second 

assumptions, out of 11 years that the predicted values 

are different, the second assumption provides better 

estimates in 7 years. Although Gray’s forecast presents 

a better estimate overall.  

Table 1: Atlantic hurricane original records and 

forecasts 

Year 
Actual 

Number 
Gray's 

Forecast 

             

1
st
 

assumption 
2

nd
 

assumption 

1990 8 6 5 5 

1991 4 3 6 6 

1992 4 4 5 5 

1993 4 6 5 5 

1994 3 4 5 5 

1995 11 9 5 6 

1996 9 7 6 7 

1997 3 6 6 7 

1998 10 6 5 6 

1999 8 9 6 7 

2000 8 7 6 7 

2001 9 7 6 7 

2002 4 4 6 7 

2003 7 8 6 6 

2004 9 7 6 7 

2005 15 10 7 7 

2006 5 7 8 9 

2007 6 8 7 8 

2008 8 9 7 7 

2009 3 4 7 7 

2010 12 10 7 7 

2011 7 9 7 7 

4. PRINCIPAL COMPONENT ANALYSIS (PCA) 
 

As shown in Figure 3, the annual Atlantic Basin 

hurricane observations are positively correlated with 

AMM, AMO, TNA, and CAR (0.49, 0.53, 0.55, and 0.40, 

respectively) and have negative correlations with ENSO 

(        ) and NAO (        ). The analysis shows 

that the number of hurricanes is poorly correlated with 

NAO. This is relevant since the NAO pattern generally 

has a greater influence on the location of the jet stream 

on the North Atlantic and also on hurricane tracks as 

opposed to being a hurricane development mechanism 

(Elsner et al. 2000).  

Correlation analysis of climate indices shows that 

these climate indices have some degree of dependency 



(Vimont and Kossin, 2007). AMM is influenced by a 

number of local climate conditions that all influence 

hurricane activity in Atlantic Basin. AMM is 

characterized by an SST gradient (Xie and Philander, 

1994; Chang et al. 1997) and according to Chiang et al. 

(2002), Czaja et al. (2002) and references therein, the 

AMM can be excited by variation in NAO and ENSO. 

AMO is another candidate that affects the excitation of 

decadal AMM variability. The SST variability patterns in 

North Atlantic climate models suggest that a warm 

phase of the AMO strengthens Atlantic hurricane 

activity. AMM also correlates strongly with Atlantic 

hurricane activity on decadal and interannual time 

scales (Vimont and Kossin, 2007). Weaker AMM 

coincide with negative AMO years (Rumpf et al. 2010). 

The TNA Index can be considered as a smaller subset 

of the AMO and since the sea surface temperatures 

also influences air pressures, it is correlated with NAO. 

Approximately about 25% of the variation in the TNA 

can be explained by ENSO fluctuations (Hastenrath et 

al. 1987, Hameed et al. 1993, and Enfield and Mayer, 

1997). 

 

Figure 3: Climate indices vs. historical Atlantic 

hurricanes  

If we assume that the annual number of hurricanes 

is a function of the above-mentioned six indices, any 

dependency between the indices exhibits a 

multicollinearity problem (Belsley, 1976). 

Multicollinearity does not actually bias results but if there 

are any other problems which could introduce bias, 

multicollinearity can increase the order of magnitude of 

the effects of that bias. In order to remove the 

redundancy among the indices, PCA is used to identify 

the skill of the combined set of indices in predicting the 

annual number of hurricanes. In the next section, such 

an approach is explained and the degree of success of 

prediction of basin events is discussed and compared.  

PCA is based on the analysis of the covariance 

matrix, which the variances are diagonal elements of the 

matrix and the covariance values are off-diagonal terms. 

By dividing the covariance matrix by the variances the 

correlation matrix will be obtained which is the 

covariance matrix of the normalized variables. The 

eigenvalues and eigenvectors of the covariance matrix 

are then computed. Unlike the original data vectors, the 

eigenvectors are uncorrelated and orthogonal. The 

projection of the original data vectors onto the 

eigenvectors space yields the principal components. In 

general, fewer eigenvectors are required to sufficiently 

represent the data. This quantity of principal component 

analysis allows for data simplification and reduction.  

In this paper, a climate matrix is generated 

considering six climate indices: AMM, AMO, NAO, 

ENSO, CAR, and TNA that influence the hurricane 

activity in the Atlantic Basin. The PCA is conducted to 

transform the climate matrix [  ] (    matrix) to the 

normalized orthogonal space. M is the number of 

climate indices and N represents the number of 

observations. This transformation is achieved by 

performing a standard eigenvalue analysis on the 

covariance matrix as described above using the climate 

indices. The covariance matrix is defined by 

[   ]  
 

   
[  ] [  ] 

If [ ] represents the normalized eigenvectors of 

[   ], then the coefficient matrix can be obtained by: 

[ ]  [ ] [  ]  

[ ] is an     matrix. The first element of each 

column of the coefficient matrix describes the 

contribution of the first mode; the second element 

defines the participation of second mode, and so on. 

The degree of importance of an eigenvector is related to 

the size of its eigenvalue and the larger the eigenvalue 

the more important the corresponding mode shape 

(eigenvector). 

Given that substantial correlation exists among the 

oceanic/atmospheric data (indices), the information in 

the original data-set are redundant. In general, the first 

few eigenvectors of the covariance matrix will capture 

most of the variations. Figure 4 shows the relationship 

between each climate index and each principal 

component (mode shape) in normalized space. The 

AMM, AMO, TNA, and CAR are highly correlated with 

first principal component (0.80, 0.91, 0.95, and 0.87, 

respectively). ENSO is highly negatively correlated with 



the second mode (-0.92) as the NAO is with the third 

mode (-0.79).  

For each climate index, anomalies during pre-

hurricane-season months – from May through July – are 

used. The proportion of the total joint variation in the 

data represented by the first L modes can be computed 

from the eigenvalues using the following equation: 

                             
∑   

 
   

∑   
 
   

 

Where   is the eigenvalue for mode m. The first 

three principal components define 88% of the joint 

variability in the climate indices in the normalized space. 

Figure 5 shows the percentage  of the total variability as 

described by each principal component.  

 
Figure 4: Correlation between climate indices and 

principal components (normalized space). 

 
Figure 5: The proportion of total variance in the data 

represented by each mode 

In the next step, the coefficient matrix associated 

with the first three principal components is used to 

estimate the annual number of hurricanes in the Atlantic 

Basin. As the principal components are uncorrelated, 

the first three modes which explain most of the variance 

are employed to perform multiple linear regression 

analysis. 

                       

Where   [  ] and    is the number of hurricanes 

in year t.   (residual) is a random variable that is 

normally distributed with mean zero and a variance of 

  
  (       ). In order to estimate the parameters of 

the regression function, “the ordinary least squares” 

method is used. This method obtains the parameters in 

which the sum of squared residuals is minimized.   

     ∑  
 

 

   

 

Figure 6 shows the correlation between the 

observed and predicted number of hurricanes for years 

between 1951 and 2010. The predicted number of 

hurricanes using the best fit regression model is 

relatively well correlated with the observed numbers (R 

= 0.64). 

 
Figure 6: Correlation of observed and predicted number 

of Atlantic hurricanes  

In order to compare the predicted results obtained 

from PCA using the first three principal components with 

Gray’s forecasts as described in Table 1, we used the 

data-set from 1951 to 1989 to specify the regression 

parameters. The                parameters is re-

estimated as the number of hurricanes of each 

successive year becomes available (least squared 

analysis has been applied dynamically following 1990). 



The actual number of hurricanes, Gray’s August 

forecasts and the predicted number of hurricanes (using 

the above regression model) from 1990 to 2010 are 

presented in Table 2. Out of 15 years in which one of 

the forecast methods did better than the other one, the 

PCA provides better estimates in 8 of those years. The 

corresponding number for Gray’s is 7. The correlations 

between the actual and predicted hurricane numbers 

are shown in Figure 7.  Considering the data from 1990 

to 2010, the correlation coefficients are 0.79 using the 

PCA and 0.62 based on Gray’s forecasts. 2011 

prediction is not added as some of the indices used for 

PCA-based model is not currently available. 

 Table 2: PCA and Gray’s forecast comparison 

Year 
Actual 

Number 
Gray’s 

Forecast 
PCA 

1990 8 6 6 

1991 4 3 4 

1992 4 4 5 

1993 4 6 4 

1994 3 4 4 

1995 11 9 7 

1996 9 7 6 

1997 3 6 5 

1998 10 6 9 

1999 8 9 7 

2000 8 7 6 

2001 9 7 6 

2002 4 4 4 

2003 7 8 7 

2004 9 7 7 

2005 15 10 9 

2006 5 7 7 

2007 6 8 7 

2008 8 9 8 

2009 3 4 6 

2010 12 10 11 

5. CONCLUSIONS 

In the first part of this paper, the Atlantic hurricane 

forecast results from              were compared to 

the forecast from Gray’s model for years between 1990 

and 2011. This analysis suggests that Gray’s 

methodology demonstrates clear superiority compare to 

            . This finding leads us to the second part 

of the paper which examined the viability of the new 

approach. Considering the contribution of climate 

fluctuations and their influence on hurricane activity in 

North Atlantic Basin and the possibility of redundancy 

among oceanic/atmospheric indices, we used a PCA-

based approach along with multiple linear regressions. 

 
Figure 7: Correlation between Actual number of Atlantic 

hurricanes and estimated number of hurricanes using 

Gray’s forecast and PCA methodologies. 

The PCA indicates that the first three principal 

components can reasonably explain the variability 

existing in the original data.  These three components 

were used to design a multiple linear regression model 

in order to estimate the hurricane numbers per year. 

The predicted number of hurricanes using the best fitted 

regression model designed based on the PCA shows a 

better correlation with historical records compared to 

Gray’s forecasts.  
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