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1. INTRODUCTION

1
 

It is commonly accepted that an a priori 
expectation of a forecast’s skill is a necessary part 
of every forecast (Kalnay and Dalcher 1987; 
Molteni and Palmer 1991; Tennekes et al 1987; 
Palmer and Tibaldi 1988). The degree of skill in 
forecasting the atmosphere varies based on initial 
condition errors, imperfect model formulations, 
and the inherent uncertainty of different 
atmospheric states (Kalnay and Dalcher 1987). An 
estimation of the effects of such uncertainties on 
forecast accuracy is imperative to quantify the 
amount of confidence that should be allotted for an 
individual forecast. Even with the obvious benefits 
of skill predictions, to the author’s knowledge, 
there have been no studies applying skill 
predictions to hurricane intensity forecasts.  This is 
particularly surprising because operational tropical 
cyclone track forecasts have improved 
dramatically in the past 20 years, while intensity 
forecasts have lagged behind and in some cases 
regressed. According to the National Hurricane 
Center’s (NHC) official verification results, the 
average forecast error from 1990 to 2010 for the 
24 hour to 72 hour official (OFCL) intensity 
forecasts have shown below 1 knot improvement 
and in the case of the 24 hour forecast, the 
forecast error has increased (Cangialosi and 
Franklin 2011). 

Therefore, there could be great value of 
forecasts of forecast skill for tropical cyclone 
intensity models. Firstly, by knowing when models 
are consistently underperforming or succeeding, 
forecasters can know what situations produce 
forecasts that deserve higher or lower confidence. 
For example, if a tropical cyclone is approaching 
land and models are in a high confidence regime, 
then emergency managers can bolster their 
evacuations and storm preparations accordingly 
as a result of the larger reliability of a land-falling 
prediction. Secondly, a handful of statistical, 
dynamical, and “hybrid” (a mixture of the two) 
models have recently been developed but no 
individual model consistently outperforms the 
others (DeMaria and Gross 2003). If forecast 
solutions diverge, knowledge of which model is 

                                                           
*Corresponding author address: Kieran T. Bhatia, Univ. 
of Miami, RSMAS, email: kieran.bhatia@gmail.com 

reliable in a given situation can help NHC 
forecasters decide which model to favor and 
consequently produce better verifying forecasts. 
Finally, if skill forecasts reveal that certain 
environmental conditions or the level of variability 
in the current flow pattern (consistency between 
adjacent forecasts, skill of earlier short-range 
forecasts, etc.) consistently lead to less or more 
reliable forecasts then further investigation into 
these regimes are obligatory. Modelers can focus 
their efforts into improving a model in these less 
reliable situations and explore the dynamical 
mechanisms that cause low confidence regimes. 

 As a result of the potential value of skill 
predictions, the main goal of this preliminary 
investigation into tropical cyclone intensity forecast 
improvement is to test a variety of environmental 
parameters’ ability to predict forecast skill. These 
results should address conventional wisdom about 
which environmental conditions lead to better 
forecasts of hurricane intensity and highlight the 
different strengths of each model. Then, in future 
work, the author will statistically select which 
predictors of skill perform the best and produce a 
probabilistic forecast of confidence to accompany 
each intensity forecast.  

In this study, the four hurricane intensity 
models that were operational for the duration of 
the 2006-2010 hurricane seasons, as well as the 
official forecast (OFCL), are evaluated based on 
different performance metrics. The four models 
include the Logistic Growth Equation Model 
(LGEM), the Statistical Hurricane Intensity 
Prediction Scheme (SHIPS), SHIFOR5 model 
(updated version of SHIFOR), and the GFDL 
hurricane model.  The better-performing inland 
decay version (DSHP) of the SHIPS model was 
used instead of SHIPS. Each model’s 
performance is assessed by computing the mean 
absolute error (MAE), bias, and skill relative to the 
SHIFOR5 model for 24, 48, and 72 hour forecasts 
in the Atlantic basin. These performance metrics 
are binned based on certain environmental 
conditions (“predictors”) and computed for each of 
the different models.  
 
2. METHODOLOGY 

The 24, 48, and 72 hour intensity forecasts 
and 0 hour verification for the GFDL, OFCL, and 



SHF5 models were obtained from NOAA’s ATCF 
database. The predictor values as well as the 
DSHP and LGEM forecasts and verification data 
came from ftp://rammftp.cira.colostate.edu/ 
demaria/ships/stext_oper/.  The predictors at this 
site are outputs from the GFS model. The 
predictors tested include initial intensity, storm 
speed, initial shear (850-200 hPa), potential 
intensity, shear direction, latitude, and the average 
of each of these predictors during the forecast 
period (i.e. for a 24 hour forecast, the average of 
each 6-hourly forecasted shear up until 24 hours).  

To evaluate the skill of intensity forecasts for 
each model, histograms were made for individual 
predictors by selectively binning a predictor and 
plotting the performance metrics for the forecasts 
based on those bins. The forecast error values 
necessary for computing MAE, bias, and skill were 
obtained by comparing each model’s intensity 
forecast to the corresponding 0 hour operational 
analysis (not by verifying against best track). Two-
variable plots were created by graphing the 
performance metrics against two predictors. Each 
square on these two variable plots represents a 
range of values for each predictor, and the square 
is shaded a different color to indicate the 
magnitude of MAE, skill, or bias. Binning was 
accomplished through two different methods: 
either dividing the data into 3 approximately equal 
sized bins or selecting arbitrary bin sizes to gain 
insight on whether certain ranges yielded 
anomalous results. The “equal sized” bins were 
determined by taking all the predictor values for 
the different models and splitting them up into 
thirds based on the values of the predictor.  

 
 3. RESULTS 

Figure 1 and 2 provide examples of how a 
histogram and a 2-variable plot demonstrate 
particular intensity models are more adept in 
certain environmental conditions as well as what 
conditions lead to low predictability for all models.  
Figure 1 contains four arbitrarily binned 
histograms for each model with skill plotted 
against 24 hour average forecast shear. The 
histograms show skill values that vary significantly 
across the bins. However, it is clear that the shear 
range 15 to 22.5 knots displays the lowest skill in 
every model. Yet, a paired t-test reveals that these 
differences among each model’s bins are not 
significant at the 95% confidence level so they are 
not statistically robust. Figure 1 is particularly 
insightful because the differences among bins 
appear significant but a t-test confirms that this is 
a false conclusion.  

 
Figure 1.  Skill of the 24 hour intensity forecast is 

plotted against the 24 hour average forecast shear 

for DSHP (top left), GFDL (top right), LGEM 

(bottom left), and OFCL (bottom right) models.  

 

Figure 2.  Skill of the 24 hour intensity forecast is 
contoured against 24 hour average forecast shear 
and 0 hour intensity for DSHP (top left), GFDL (top 
right), LGEM (bottom left), and OFCL (bottom 
right) models. 
 

Adding a second predictor provides a more 
detailed description of the synoptic situations that 
are associated with the most skillful forecasts.  Bin 
ranges that contain less than fifteen forecasts are 
excluded. A lot of information can be gleaned from 
Figure 2 but an especially unique pattern is visible 
for high intensity, low shear bins. These specific 
cases are forecasted exceptionally well by LGEM 
but poorly by OFCL and GFDL. The GFDL model 
is very unreliable (~ -20% skill) for all forecasts 
made with 24 hour forecast shear between 7.5 to 
15 knots and initial intensity between 90 and 120 



knots while LGEM is at a skill level in the 40 
percent range. These results suggest that OFCL 
forecasts should weight LGEM more for these 
synoptic situations. The bootstrap method was 
used to compare the same bin between different 
models. This statistical technique, due to the fact 
there was less than 40 cases in this bin, showed 
that the difference in the mean skill of the 
mentioned bin for LGEM and GFDL is not 
significant at the 95 percent confidence level. 
More cases are needed before this result can 
become statistically significant. 
 In Figure 3, the intensity at the time of the 
forecast is plotted against the bias of the 48 hour 
intensity forecast. The large bias of the forecasts 
in the 90 to 120 knot intensity bin are very large in 
all models. In fact, for each model, the mean bias 
in this bin is significantly different at the 95 percent 
confidence level from the bias in all the other bins 
(one exception is the 60-90 knot intensity bin for 
GFDL). This statistical technique revealed the bias 
in the OFCL model’s 90-120 knot intensity bin is 
significantly larger (at the 95% confidence interval) 
than the LGEM model. Figure 3 reflects that when 
the differences in the performance metric between 
bins becomes large, the sample size is sufficient 
to maintain statistical significance among the bins.  

 
Figure 3. 48 hour forecast bias is plotted against 
the 0 hour intensity for DSHP (top left), GFDL (top 
right), LGEM (bottom left), and OFCL (bottom 
right) models. 
 
 Finally, by using fewer bins in the two figure 
plots, significance between bins can be reached. 
In Figure 4, MAE is plotted against 24 hour 
average forecast shear and 0 hour intensity. The 
binning ranges are derived from the previously 
mentioned “equal binning technique” for each 
predictor. By focusing on the low shear, high 
intensity (0-9 knots shear, greater than 61 knots 
initial intensity) for the GFDL, LGEM, OFCL, and 

DSHP models, it is clear that LGEM outperforms 
the other models. The MAE of the mentioned 
LGEM bin is significantly less than the 
corresponding OFCL bin at the 95 % confidence 
interval. With this level of confidence in the fact 
that the difference in the means of the bins is 
significant, one can realistically say at the time of a 
forecast that if your tropical cyclone is above 60 
knots in intensity and is moving into region with 
shear between 0-9 knots that your OFCL forecast 
should rely heavily on the LGEM forecast. Similar 
conclusions can be made for other models in 
different circumstances.     
 

 
Figure 4. MAE of the 24 hour intensity forecast is 
contoured against 24 hour average forecast shear 
and 0 hour intensity for DSHP (top left), GFDL (top 
right), LGEM (bottom left), and OFCL (bottom 
right) models. 
 
 
From these four  figures alone, forecasters are 
able to discern what situations produce poor 
model forecasts and can gain intuition which 
models to trust and how much confidence to put in 
a forecast. 
 
4. CONCLUSIONS AND FUTURE WORK 

The results from this study offer a new 
approach for improving tropical cyclone intensity 
forecasts. For all the cases analyzed during this 
investigation, LGEM was the most skillful model 
for the 48 hour and 72 hour forecasts and almost 
identical in performance to the OFCL for the 24 
hour forecasts. The GFDL model was significantly 
worse than the other models for all forecast times. 
Histograms and two-variable plots were created 
for a variety of predictors and three forecast times 
and countless conclusions are possible based on 
the results. Four figures were presented to provide 



an example of the inferences possible from these 
plots. Expanding these results could lead to more 
knowledge about the reasons for intensity 
forecasts’ poor performance in recent years and 
lead to better forecasts in the future. 
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