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1. Introduction

Traditional observational analyses of vorticity, diver-
gence, and deformation fields usually rely on interpolating
observations to either a Cartesian or spherical grid and
then evaluating the appropriate finite difference equations.
While this approach has the benefit of creating a set of
gridded data which is easily processed via computer, it has
been shown that greater accuracy can be obtained by us-
ing a line integration method, which employs Green’s The-
orem, on triangular regions (Spencer and Doswell 2001).

Bourassa and Ford (2010) implemented Green’s Theo-
rem using polygonal regions on gridded Quikscat wind data
to calculated vorticity. Using this approach they demon-
strated that regions defined by polygons of higher order
can significantly reduce the uncertainty in vorticity cal-
culations. At minimum, this approach requires some prior
knowledge of the distribution of observations and it is prefer-
able that the observations occur on a grid. Although this
limitation prevents the use of this approach with observa-
tions which are not taken in a uniform pattern (e.g. drop-
sondes), their conclusion, that increasing the order of the
bounding polygon decreases the uncertainty of the calcu-
lation, remains valid.

Accordingly, the present study describes a line integra-
tion method using polygonal regions which can be applied
in situations where data is not distributed according to a
predictable pattern. Section 2 briefly explains the applica-
tion of Green’s Theorem for calculating spatial derivatives.
Details on the construction of the polygonal regions are
provided in section 3. Section 4 provides a detailed evalua-
tion of the accuracy of this approach and some concluding
remarks are given in section 5.
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2. Calculation of Spatial Derivatives

Spatial derivatives, such as vorticity, can be calculated
using Green’s Theorem on any given region whose bound-
ing polygon is defined by three or more observations. More
specifically, for a region bounded by the circuit C and hav-
ing area A,

∂Q

∂x
− ∂P

∂y
=

∮
C

Pdx + Qdy

A

≈
∑

(P∆x + Q∆y)
A

, (1)

where Q and P are arbitrary variables and ∆x and ∆y are
the zonal and meridional components of the edge lengths,
respectively. By assigning the proper variables and signs to
Q and P in Eq. (1) any spatial derivative can be calculated.
Table 1 provides the appropriate values and resulting equa-
tions for vorticity, divergence, and deformation.

Variable P Q Equation

Vorticity u v ∂v
∂x −

∂u
∂y ≈

P
(u∆x+v∆y)

A

Divergence −v u ∂u
∂x + ∂v

∂y ≈
P

(u∆y−v∆x)
A

Shearing
Deformation

−u v ∂v
∂x + ∂u

∂y ≈
P

(v∆y−u∆x)
A

Stretching
Deformation

v u ∂u
∂x −

∂v
∂y ≈

P
(v∆x+u∆y)

A

Table 1. Approximations of spatial derivative equations
for vorticity, divergence, and deformation where u and v
are the zonal and meridional components of the wind, re-
spectively.
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Fig. 1. Outline of the polygon construction process using data from the PREDICT field experiment (Montgomery
et al. 2011). First, (a) a Delauney triangulation is constructed on the set of observations. (b) For each observation, the
neighborhood of that observation (red highlighting) is found. (c) A polygon is then constructed using the neighborhood
vertices. (d) The average wind vector for each edge is then calculated and then (e) decomposed. Applying Green’s
Theorem to calculate vorticity (see equation in Table 1) and repeating the process for each observation results in (f) a
vorticity field.

3. Polygonal Region Construction

The polygon-based regions used in the method pro-
posed here are an extension of the triangular regions used
by previous methods (e.g. Spencer and Doswell 2001) and
are constructed using a triangle tessellation. More specif-
ically, a Delauney triangle tessellation is used due to a
number of beneficial properties. Of greatest convenience
to scientific study is the property that the Delauney trian-
gulation on any given set of points is unique allowing for
easy reproduction of results. Additionally, this type of tri-
angulation maximizes the minimum of the three angles of
each triangle meaning that the greatest number of trian-
gles will be regular, or approach being regular. The benefit
of having regular, or near-regular, triangles is two-fold: it

not only encourages edges to be of similar length (and thus
have similar weighting in a line integration), but it also en-
courages shorter edges which reduces the two-dimensional
scale on which the calculation will apply. It is important
to note that while maximizing the minimum angle encour-
ages shorter edges overall, a Delauney triangulation does
not guarantee a minimization of triangle edge length (Lloyd
1977).

As mentioned previously, the polygon construction pro-
cess begins with a Delauney triangle tessellation, an exam-
ple of which is given in Fig. 1a. For each observation, the
set of all other observations which share an edge, referred
to as an observation’s neighborhood, is located (Fig. 1b).
The neighborhood polygon for an observation is defined
by its neighborhood vertices, as depicted in Fig. 1c. The
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Fig. 2. Analytic vorticity on a 1000 km by 1000 km do-
main. Solid contours indicate positive vorticity while bro-
ken contours indicate negative vorticity.

mean wind is then calculated for each edge (Fig. 1d) and
decomposed (Fig. 1e) into its zonal and meridional com-
ponents. Using the equations provided in Table 1 and re-
peating the process for each observation, a field of values
can be calculated. An example of the calculated vorticity
field is provided in Fig. 1f. It is worth noting that in in-
stances where the observation lies on the outer edge of the
tessellation, i.e. on the convex hull, the observation is used
alongside its neighborhood vertices to reduce the frequency
of triangular neighborhood polygons.

4. Evaluation of Accuracy

In order to evaluate the accuracy of the method pro-
posed here, artificial observations are generated using si-
nusoidal variations in the meridional and zonal winds, as
in Spencer and Doswell (2001), such that an analytical so-
lution for the spatial derivatives is attainable. An exam-
ple of the resulting analytic vorticity is shown in Fig. 2.
As an in-depth comparison between using a Cartesian in-
terpolation approach and a triangle-based line integration
approach is provided by Spencer and Doswell (2001), this
study limits the comparison to using polygonal and trian-
gular regions in a line-integration approach. For brevity,
only the accuracy of the vorticity is examined here.

Since the proposed method was developed in order to
analyze vorticity from dropsonde wind observations, the
error analysis provided here distributes the artificial obser-
vations along a number of flight paths. The observations

Fig. 3. Example of a lawnmower-pattern flight path (red)
with 30 randomly perturbed observations (asterisks) and
corresponding Delauney triangle tessellation. Note the do-
main is 1000 km by 1000 km.

are positioned by first evenly distributing them along the
flight path and then applying a random two-dimensional
perturbation. The error analysis is limited to a lawnmower-
pattern flight path here due to space constraints. An exam-
ple of a lawnmower flight path is highlighted in red in Fig.
3. Also included in Fig. 3 are the observation locations (as-
terisks at the triangle vertices) as well as the corresponding
Delauney triangle tessellation.

The vorticity fields which result from performing the
line-integral method calculations on triangular and polygo-
nal regions are depicted in Fig. 4a and Fig. 4b, respectively.
Note the sharp gradients and extreme values present on the
edges of the triangle-based analysis are not present in the
polygon-based analysis. These values are caused by cal-
culations on long, narrow triangles often found near the
edge of the observation domain (see Fig. 3) which have
relatively small areas and give overwhelming weight to the
most distant observation. It is worth noting that, although
most studies which rely on triangular regions remove these
long, narrow triangles, the polygonal region approach re-
tains the data that would otherwise be thrown out. Al-
though the polygonal regions reduce the errors caused by
these triangles (through reducing the influence of individ-
ual observations) caution should be exercised when sharp
gradients are present. Also noteworthy is the difference in
magnitude between the analytic vorticity (Fig. 2) and the
calculated vorticities (Fig. 4). The primary drawback of
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a) b)

Fig. 4. Vorticity field calculated using the line-integral method with (a) triangular regions and (b) polygonal regions
on a 1000 km by 1000 km domain. The light gray horizontal and vertical lines indicate the analytic relative vorticity
zero-lines (see Fig. 2) and are included for pattern comparison. The artificial observations are distributed as per Fig. 3.

a) b)

Fig. 5. Root-mean-square error calculated over (a) the full domain and (b) an inner domain which excludes the outer
250 km. Calculations are performed using 100 sets of 30 observations with randomly perturbed locations based on a
lawnmower flight path. The error is calculated using the analytic fields (e.g. Fig. 2) as the base truth. Errors resulting
from a triangle-based approach are plotted with a broken line and those resulting from a polygon-based approach are
plotted with a solid line. Note that the wavelength corresponding to Fig. 2 is 1000 km. For reference, the RMSE of
divergence (purple), stretching deformation (blue), and shearing deformation (red) are included in addition to the RMSE
of vorticity (black).
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using Green’s Theorem for calculating spatial derivatives
is that the extrema are muted, an effect which is more
pronounced when polygonal regions are used.

The root-mean-square error (RMSE) is calculated over
the entire domain (Fig. 5a) as well as over an inner do-
main which excludes the outer 250 km (Fig. 5b). Note the
reduction in the full domain RMSE when using polygonal
regions exceeds an order of magnitude for features with a
wavelength greater than 150 km. As previously noted, this
vast improvement results from an increased robustness to
long, narrow triangles. By restricting the calculations to
the inner domain, these triangles are excluded from the
RMSE, resulting in far less of a difference in RMSE values.

5. Conclusions

A new line-integral method is proposed for calculating
spatial derivatives from non-uniform observations. This
method uses polygonal regions instead of the triangular re-
gions used by previous studies. By using polygonal regions,
the method is more robust to the long, narrow triangles
which result in large errors in triangle-based calculations.
While these error-prone triangles are usually removed from
triangle-based analyses, the use of polygonal regions allows
this data to be retained. Furthermore, when these trian-
gles are not present, there is very little difference between
polygon- and triangle-based methods in terms of RMSE.
Finally, it is worth noting that this method can be used
to calculate any spatial derivative and is not limited to
those involving wind vectors. Additional examples of anal-
yses using the proposed method are available in Helms and
Hart (2012, 10A.2).
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