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1. INTRODUCTION

The dynamics of tropical cyclones (TCs) can be influ-
enced on a wide range of spatial and temporal scales.
The numerical modeling of such multi-scale problems
is challenging, since not all of the small-scale features
can be well-resolved in large spatial domains due to lim-
ited computing capacities. Therefore, adaptive methods
which allow for varying mesh resolution are promising,
since relevant regions can be investigated in more de-
tail by using higher mesh resolution locally. But due to
the physical coupling of the processes in the atmosphere
and the effect of advection, errors that have developed
somewhere in the domain earlier in time, might grow and
prolongate even to regions of high resolution at which the
error was meant to be small. Hence, the fundamental
question remains at which regions of the domain the lo-
cal mesh resolution of the discrete model should be kept
high to keep the error with respect to some user-defined
measure small.

We consider a goal-oriented adaptivity approach based
on the Dual Weighted Residual (DWR) method (Eriksson
et al., 1995; Bangerth and Rannacher, 2003). The er-
ror measure is defined in terms of some output functional
which represents a feature of the solution that should be
determined very accurately. The influence of perturba-
tions on this functional – denoted as goal-functional in
that context – can be valued by means of adjoint sensi-
tivity which is the solution of a corresponding dual prob-
lem. This sensitivity information represents a major in-
gredient for the overall adaptive method since it allows to
estimate each cell’s contribution to the error in the goal-
functional. These contributions can be used to guide the
mesh-adaptation process towards an efficient discretiza-
tion.

We apply this generic approach of mesh adaptation to a
scenario of binary tropical cyclone interaction and focus
on the precise prediction of the storm track. We introduce
a goal-functional that is strongly correlated with the storm
position. Approximate solutions of this scenario cor-
responding sensitivity information are calculated based
on a space-time finite element discretization. Adapta-
tion of the spatial mesh by local mesh refinement and
coarsening and the use of optimal time steps which both

∗Corresponding author address: Martin Baumann, Engineer-
ing Mathematics and Computing Lab (EMCL), Karlsruhe Insti-
tute of Technology (KIT), Fritz-Erler-Str. 23, 76133 Karlsruhe,
Germany; e-mail: martin.bauman@kit.edu.

are determined based on the estimated error contribu-
tions lead to significant gain in efficiency of the discrete
model. The investigated physical model is simple (i.e.
two-dimensional; barotropic; no effects of temperature
and moist), but the applied concept of goal-oriented er-
ror estimation and adaptation are generic. Therefore, the
presented results clearly show the great potential of such
techniques to improve the efficiency of TC models.

2. MODEL AND DISCRETIZATION

2.1 Physical model

The dynamics of tropical cyclones can be described ap-
proximately using a non-divergent barotropic model. We
neglect the contribution of the Earth’s rotation and denote
by Ω := [−L1, L1]× [−L2, L2] ⊆ R2 (L1, L2 ∈ R) the spatial
domain and by [0, T ] the time horizon. The vector-valued
function υ : [0, T ] × Ω → R2 denotes the velocity field
and p : [0, T ] × Ω → R the scalar pressure field. For the
kinematic viscosity ν > 0 and initial velocity field υ0, the
time-dependent incompressible Navier-Stokes equations
have the form:


∂tυ + (υ · ∇)υ − ν∆υ +∇p = 0, in [0, T ]× Ω,
∇ · υ = 0, in [0, T ]× Ω,
υ(0, x) = υ0(x), ∀x ∈ Ω.

(1)

We imply space-periodic boundary conditions, such that
the velocity and pressure fields must fulfill

υ(t, x + Liei ) = υ(t, x), p(t, x + Liei ) = p(t, x), (2)

for any (t, x) ∈ [0, T ] × Ω and i ∈ {1, 2}, where e1 :=
(1, 0)T , e2 := (0, 1)T . The techniques of goal-oriented
error estimation and adaptation presented in Section 3
will be described based on a space-time finite element
method for a corresponding variational formulation of
problem (1)-(2), given in the following.

But before, some notations and function spaces are intro-
duced. The space of trial functions for the velocity is de-
noted by X and contains continuous functions in time. Y
denotes the space of test functions for the velocity and M
the space of test and trial spaces for the pressure. Func-
tions in Y and M don’t need to be continuous in time.
(a, b) :=

∫
Ω a(x) b(x) dx denotes the scalar product of two



square-integrable functions a and b. Further details on
these function spaces and concepts can be found e.g.
in (Emmrich, 2004).

2.2 The primal problem

Now the variational formulation can be given. The func-
tions (υ, p) ∈ X × M denote a weak solution of problem
(1)-(2), if it holds

ρ(υ, p)(ϕ,ψ) = 0, (3)

for all test functions (ϕ,ψ) ∈ Y × M. Problem (3) is de-
noted the primal problem in the following. Here, the resid-
ual ρ is defined in terms of integrals in time and space by

ρ(υ, p)(ϕ,ψ) :=
∫ T

0

(
(∂tυ + (υ · ∇)υ,ϕ) + ν(∇υ,∇ϕ)

− (p,∇ · ϕ) + (∇ · υ,ψ)
)

dt

+ (υ|t=0 − υ0,ϕ|t=0).

2.3 The dual problem

The dual problem allows to quantify the sensitivity that
perturbations of the solution υ ∈ X of problem (3) have
on some user-defined goal-functional J : X → R. This
functional represents a quantity, that is of interest for the
current investigation. The dual problem can be derived
as described for optimization problems, see e.g. (Hinze
et al., 2008). It is posed backward in time and has the
following form: Find (z, q) ∈ X ×M such that it holds

ρ∗(z, q)(ϕ,ψ) = 0 (4)

for all test functions (ϕ,ψ) ∈ Y ×M. The dual residual ρ∗

is defined by

ρ∗(z, q)(ϕ,ψ) :=
∫ T

0

(
−(∂tz,ϕ)Ω + ((υ ·∇)ϕ + (ϕ·∇)υ, z)

+ ν(∇ϕ,∇z)− (∇·z,ψ) + (∇·ϕ, q)
)

dt

+ (z|t=0,ϕ|t=0) +∇J(υ)ϕ.

The goal-functionals used for the numerical runs in Sec-
tion 4 will be defined as integral over the domain Ω at
the final time T , i.e. J(υ) := (j(υ|t=0), z|t=0). In this case,
the linearization∇J(υ)ϕ represents the initial condition of
the dual problem which corresponds to the final time T .
Further details can be found in (Baumann, 2011).

2.4 Space-time finite element discretization

We applied a conforming space-time finite element
method based on a partitioning of the time interval [0, T ],
0 = t0 < · · · < tN time = T , and a triangulation of the domain
Ω into Nspace quadrilaterals. For the discretization, the
function spaces Xh ⊂ X , Yh ⊂ Y and Mh ⊂ M are defined
as described in the following. In each interval (ti−1, ti ),

-
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FIG. 1: Iterative procedure of calculation of primal and
dual solution, error estimation and adaptation.

the velocity function is linear in time and globally continu-
ous. All test functions as well as the pressure function are
piece-wise constant in time, with jumps at ti (i = 1, . . . , N).
This time-discretization leads to a time-stepping scheme,
since the discontinuous test functions decouple the global
problem. This approach is based on the cGP(1)-method
described in (Schieweck, 2010). For the discretization
in space, stable Taylor-Hood elements are applied, see
e.g. (Ern and Guermond, 2004). On each quadrilateral,
the velocity function is bi-quadratic and the pressure bi-
linear, and both are globally continuous. For the primal
and the dual problems (3) and (4) these discrete function
spaces lead to finite-dimensional systems.

3. ERROR ESTIMATION AND MESH ADAPTATION

In this section, we describe an adaptivity approach of the
space and time discretization that leads to more efficient
methods for the determination of the quantity of special
interest for the investigator. The spatial mesh is refined
or coarsened and the time step sizes are chosen based
on error indicators that are part of an a posteriori error
estimator described in the following.

Let υh ∈ Xh be the velocity field of the discrete solution
of the primal problem (3). For the goal-functional J, the
solutions defect with respect to the quantity of interest is
J(υ)− J(υh), where υ ∈ X denotes the exact velocity field
of the primal problem. For this error quantity, an evalu-
able error characterization can be given by an a poste-
riori error estimator (Bangerth and Rannacher, 2003;
Baumann, 2011), known in the context of the Dual-
Weighted Residual (DWR) method:

|J(υ)− J(υh)| ≈E(υh, ph, zh, qh)

≤
Nspace

∑
i=1

ηspace
i +

N time

∑
j=1

ηtime
j .

The estimator E is defined in terms of the primal residual
ρ and the dual residual ρ∗ and makes use of patch-wise
higher-order interpolation as described in (Bangerth and
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Rannacher, 2003). The spatial error indicator ηspace
i rep-

resents the maximal contribution of cell i to the error in
J over the complete time interval [0, T ]. Analogously, the
temporal error indicator ηtime

j represents the maximal error
contribution of time interval (ti−1, ti ) taken over all quadri-
laterals in the triangulation. Based on these error indica-
tors, the triangulation of the domain and the partitioning
of the time interval can be adapted, such that the space-
time mesh consists of a user-defined number of cells and
time steps.

The overall adaptive method is an iteration, and each loop
has three phases. First, the primal and dual solutions are
calculated based on a given mesh and time partitioning.
Then, the error indicators with respect to the spatial and
temporal time discretization can be determined. Finally,
the spatial mesh and the time steps can be adapted cor-
respondingly, see Fig. 1.

The adaptive numerical simulations presented in the fol-
lowing includes techniques of local mesh refinement or
coarsening (h-adaptivity) and optimal time step size de-
termination. Cells with large error indication are refined
into four smaller cells and cells with very small contribu-
tion are marked to be coarsened. Four neighboring cells
are coarsened to one bigger cell only if each of the four
cells was marked to be coarsened. This procedure leads
to so-called hanging nodes which are treated conform-
ingly, i.e. global continuity is guaranteed. We also inves-
tigated an approach of mesh deformation (r-adaptivity),
where mesh points are moved to regions of the domain,
at which high resolution is needed. Although the num-
ber of cells remains constant, the resulting error in the
goal-functional can be strongly decreased by such mesh
optimization techniques, see (Bauer et al., submitted).
The optimal time step size can be chosen such that the
temporal error indicators are approximately equally dis-
tributed over the partitioning of the time interval.

4. NUMERICAL RESULTS

4.1 Scenario: Binary tropical cyclone interaction

The interaction of two TCs is investigated based on a
barotropic model. The storms are represented by two
vortices that are closely located at initial time such that
their profiles overlap. During the first hours, the storms
start orbiting around each other. Depending on the initial
separation distance, the TCs can either merge or diverge
from one another.

The considered domain has doubly periodic boundary
conditions, i.e. Ω := [−L1, L1] × [−L2, L2], where L1 =
2000 km and L2 = 1732 km. The initial separation of
the storms is D = 400 km and the initial positions are
(−D/ 2, 0) and (D/ 2, 0). The symmetrical storm profiles
are defined in terms of their tangential wind field υT as
introduced in (Smith et al., 1990):

FIG. 2: Development of two idealized tropical cyclones.

υT (s) := ῡ
s(1 + (6b/ 2a)s4)
(1 + as2 + bs6)2 , s := r/r0,

with a = 0.3398, b = 5.377 × 10−4, ῡ = 71.521 m/s and
r0 = 100 km. For these parameters, the maximal tangen-
tial wind is 40 m/s at the radius r = r0. The initial condi-
tion of the velocity field υ0 is the sum of the two velocity
profiles for the two storms. The dynamical evolution is
investigated for a time horizon of T := 96 h.

In Fig. 2, the motion and development of the two storms
is visualized in terms of the vorticity, i.e. the curl of the
velocity field. Red areas indicate high vorticity regions
and represent the storm centers. Dark blue regions indi-
cate zones of negative vorticity represent the anticyclonic
outflow of real TCs. During the first hours, the two vor-
tices start orbiting around each other. In this phase, the
cores are strongly deformed and temporarily connected.
The zone of negative vorticity around the cores is restruc-
tured and after 12 hours, two separate negative vorticity
regions have developed which can be interpreted as an-
ticyclones. Together with the positive cores they form two
cyclone-anticyclone pairs that start to propagate away
from each other along straight tracks.

The moment at which the motion turns from orbiting into
straight direction determines the final direction of the
storm tracks. Small perturbations in the initial state can
influence when this transition takes place and thus can
have a strong influence on the final storm positions. The
high sensitivity to the initial conditions is also evident from
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FIG. 3: Dual velocity (i.e. sensitivity information) and
optimized mesh with approximately 120,000 DOFs.

the fact that for a slightly smaller initial separation, a qual-
itatively different solution is found – the two TCs merge.
For these reasons, this scenario has been chosen as a
benchmark problem for adaptive methods.

4.2 Adaptive simulations

We carried out adaptive numerical simulations of the bi-
nary cyclone interaction scenario. In the following inves-
tigation, we chose the storm that has final position on the
upper left side after 96 hours as the one that should be
approximated very accurately and represents the quantity
of interest. The storm position is characterized by the re-
gion of maximal vorticity. We introduced a goal-functional
which is strongly correlated to the storm position. It is
defined as vorticity, integrated over that storm’s core af-
ter 96 hours of development. The region that defines
the core is approximated by a circle around the storm
center P = (−1043.678 km, 153.365 km) with radius of
R = 93 km:

J(υ) :=
∫

B(P,R)
∇× υ(x, T ) dx.

At the radius R, the vorticity is approximately 50% lower
than at the center and the vorticity gradient is strong.
Therefore, small changes of the storm position have
strong influence on the vorticity integral given by J.
For this goal-functional, the reference value is J(υ) =
14.486 km2/s. The two parameters P and R were de-
termined from high-resolution reference simulations. Al-
though such parameters are not known a priori in general,
they can be determined from approximate solutions that
have been calculated already when the dual problem has
to be solved, see Section 3.

Since the two storms are in interaction during the initial
phase, the second storm has also great influence on the

FIG. 4: Relative error in goal-functional J for several
uniform and locally refined meshes.

final position of the first one. One question to be ad-
dressed is to what extent this influence will be accounted
for by the adaptive method and the resulting optimized
meshes.

For this goal-functional, we calculated error indicators
and adapted the mesh and time steps as described in
Section 3 using the multi-purpose finite element library
HiFlow3 (Heuveline, 2010). Since the exact solution is
not known for this scenario, a reference solution based
on a spatial mesh with 1,327,104 degrees of freedom
(DOFs) with a cell diameter of approximately 10 km and
1,152 time steps was calculated. For the error analy-
sis, the resulting reference solution υ and corresponding
storm position at final time is employed to quantify the
different errors.

Fig. 3 shows the dual solution, i.e. the sensitivity informa-
tion, corresponding to the goal-functional J calculated on
an optimized mesh with about 120,000 DOFs. At initial
time, the sensitive regions are almost symmetrically dis-
tributed and surround the regions of the initial positions
of the two vortices. At this stage, the vortices are closely
located and the subsequent storm tracks are significantly
impacted by their mutual interaction. Although only one
of the two storms is directly accounted for by the defini-
tion of the goal-functional, the sensitivity of both storms
is high. It can be seen that the optimized mesh has high
resolution at the region where both storms are located at
these first hours of simulation. After 32 hours, the ten-
dency of the sensitive regions to the storm on the left can
clearly be seen. After 96 hours, these congregate at the
outside radius of the circle where vorticity is approx. 50%
of the maximal value. The track of the second storm is
highly resolved as long as its influence on the track of the
first storm is strong.

In Fig. 4, the relative error in the goal-functional
|J(υ)− J(υh| /J(υ) and corresponding estimated error
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FIG. 5: Position error in km of the storm after 96 hours
for several uniform and locally refined meshes.

quantities based on uniform and adapted meshes are
plotted. The estimated and true error in the goal-
functional show good agreement, especially on meshes
with more than 30,000 DOFs. The resulting errors on
optimized meshes, are reduced by more than one order
of magnitude compared to uniform meshes (with approx-
imately the same number of unknowns).

The position error after 96 hours is shown in Fig. 5. Even
on grids with less than 20,000 DOFs, the tracks can be
predicted qualitatively correct (i.e. the storms diverge)
with a final position error below 100 km. The first mesh
with final position error of less than 10 km has about
30,000 DOFs.

The optimization of the time-discretization based on the
temporal error indicators ηtime

j is investigated in the follow-
ing, based on a locally refined mesh with 36,864 DOFs.
Fig. 6 shows in black the temporal error indicators cor-

FIG. 6: Temporal error indicators ηtime
j for an approxi-

mate solution, calculated on a time discretization with 288
intervals, plotted over the time.

FIG. 7: Time increments of a time discretization with
288 intervals, plotted over the time.

responding to a uniform partitioning of the time inter-
val. During the initial phase of mutual interaction of the
storms, the error indication is significantly higher, com-
pared to later times. By the iterative optimization proce-
dure, described in Section 3, the time increments were
adapted such that in this initial phase small time step
sizes were applied, see red plot in Fig. 7. This lead to ap-
proximately equally distributed temporal error indicators
within the total time interval, see red plot in Fig. 6.

For the investigated scenario, the optimization of the time
step sizes leads to significant improvements. On adapted
partitions, the position error was reduced by approxi-
mately one order of magnitude compared to uniform par-
titions with the same number of sub-intervals, see Fig. 8.
For example, a prediction accuracy based on 576 uniform
time-intervals could be obtained approximately on an op-
timized partitioning with only 144 increments. It must be
noted that the adaptation of the time discretization can
be accomplished independent of spatial mesh adaptation
techniques and can improve the resulting efficiency of the
discrete model strongly, as shown for this scenario.

FIG. 8: Position error in km of the storm after 96 hours
for several uniform and locally refined time partitionings.
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5. OUTLOOK AND DISCUSSION

We presented a concept of goal-oriented error estimation
and adaptation and conducted numerical runs for a sce-
nario of binary tropical cyclone interaction. The approach
is very general and can in general be applied to models
of arbitrary complexity. The calculation of the required
sensitivity information with respect to the quantity of in-
terest requires the solution of a linearized, adjoint model.
Its formulation and solution can be non-trivial, especially
if model switches for different regimes are included (e.g.
for convection).

Although we applied a simple barotropic model, the great
potential such techniques have could clearly be seen in
the numerical results. Based on the error indicators, arbi-
trary mesh adaptation techniques can be applied that are
offered by the simulation software (e.g. h- and r-adaptivity
or nesting techniques). Furthermore, the mesh can be
adapted dynamically (in the extreme case in every time
step) or statically (i.e. one mesh for the complete time
interval). The spatial mesh and the time partitioning can
be adapted independently of one another.

Next steps will cover the investigation of more complex,
three-dimensional models that also include moist pro-
cesses. Techniques to reduce the over-all computational
cost will be addressed. In this context, efficient methods
for approximate calculation of the sensitivity information
based on reduced models will be investigated.
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