Decadal Variations of Tropical Cyclone Intensity over the western North Pacific

Hai-Kun Zhao

Collaborators: Prof. Liguang Wu, Dr. Ruifang Wang

Pacific Typhoon Research Center, China
Nanjing University of Information Science and Technology, Nanjing 210044, China

Funded by: the Natural Science Foundation of China(41305050); the typhoon research project (2009CB421503); the social commonweal research program of the Ministry of Science and Technology of the People’s Republic of China (GYHY200806009); and the Natural Science Foundation of the Jiangsu Higher Education Institutions (11KJB170009).
Outline

I. Motivation

II. Data and Methodology

III. Numerical Simulation

IV. Contributions of factors

V. An possible mechanism

VI. Summary
I. Motivation

- Decadal variations in TC activity

1. TC frequency --- 20-year period (central/eastern Pacific SST)
 (Yumoto and Matsuura 2001; Matsuura et al. 2003; Yumoto et al. 2003)

2. TC track
 - Ho et al. (2004) ---- interdecadal variability
 - Liu and Chan (2008) ---- decadal variability
 - Wu and Wang (2008) ---- significant westward shift over the past four decades

3. TC intensity
 - Chan (2008) --- Cat45 TC frequency --- 16-32-year period
Uncertainty in TC intensity records

1. Cat45 TCs frequency over the WNP increase since the 1970s
 (Webster et al. 2005; Elsner et al. 2008)

2. The upward trend ----- a part of interdecadal variations
 (Chan 2006)

3. The upward trend only detected in JTWC, not in RSMC and STI
 (Wu et al. 2006; Yu et al. 2007; Song et al. 2010; Ren et al. 2011; Wu and Zhao 2012)

Does it really exist?

or

is it just a result of uncertainty in TC records?
Objectives

1) To verify the TC intensity variations in the WNP basin on the interdecadal and decadal time scales over the period 1948-2010

2) To examine the possible mechanisms associated with these variations
Recently, Wu and Zhao (2012; *J.Climate*)

1. Assessing historical TC intensity datasets with a TC intensity model—-*Coupled Hurricane Intensity Prediction System*(CHIPS) (Emanuel 2006; Emanuel et al. 2008)

2. Reproducing the evolution of the basin-wide TC intensity in the JTWC best track dataset over the period of 1975-2007

3. Cat45 TC number is a most sensitive and reliable index----in response to changes in the vertical wind shear and SST.
II. Data and Methodology

- TC data from JTWC
- Extended reconstructed SST (Version 3) from NOAA
- Monthly wind field from NCEP/NCAR reanalysis
- Coupled Hurricane Intensity Prediction System CHIPS

(Emanuel 2006; Emanuel et al. 2008)
III. Numerical Simulation

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Simulation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL</td>
<td>Both of SST and vertical wind shear are observed from 1948 to 2010.</td>
</tr>
</tbody>
</table>
III. Numerical Simulation

Red-CTRL
Green-observation
Black-adjustment----(Emanuel(2005))
Spectral analysis
<table>
<thead>
<tr>
<th>Periods</th>
<th>Mean time for a TC to achieve Cat45</th>
<th>Total lifetime Cat45</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948-1964</td>
<td>2.61 days</td>
<td>6.68 days</td>
</tr>
<tr>
<td>1965-1972</td>
<td>3.13 days</td>
<td>8.25 days</td>
</tr>
<tr>
<td>1973-2010</td>
<td>3.30 days</td>
<td>8.84 days</td>
</tr>
</tbody>
</table>

Intensity evolution

![Graph showing intensity evolution over time](#)
IV. Contributions of SST, Shear and TC tracks

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Simulation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL</td>
<td>Both of SST and vertical wind shear are observed from 1948 to 2010.</td>
</tr>
<tr>
<td>T65</td>
<td>SST is observed in 1965, but vertical wind shear changes with the observation from 1965 to 2010.</td>
</tr>
<tr>
<td>V65</td>
<td>Shear is observed in 1965, but SST changes with the observation from 1965 to 2010.</td>
</tr>
<tr>
<td>VT65</td>
<td>Both of SST and vertical wind shear are set to be those observed in 1965.</td>
</tr>
</tbody>
</table>
IV. Contributions of SST, Shear and TC tracks

CTRL (black)
VT65 (blue)
V65(green)
T65(red)
V. A possible mechanism-Observational analysis

![Graph showing Cat 45 TC frequency with positive and negative phases]

Positive phase: $R(b,c)=0.83$

Dashed line-Observation
Solid line-CTRL

Positive phase – Negative phase

![Map showing TC tracks and TC Formation]
V. A possible mechanism-Observational analysis

850hPa

Positive phase – Negative phase
Shading: SST

Correlation between Cat45 TC frequency and global SST
VI. Summary

Decadal Variations of central/eastern Pacific SST

Decadal Variations of the intensity and locations of monsoon

TC formation locations and Subsequent TC tracks

Cat45 TC frequency
Thanks for your attention!