Tropical cyclogenesis conditions in the Southwestern Indian Ocean

MEETOO Cherina ROUX Frank

Laboratoire d'Aérologie, Observatoire Midi-Pyrénées, CNRS and Université Toulouse III Toulouse, France

Presentation 1C.1 Monday 31 March 2014, 8:15 AM Session 1C (Tropical Cyclone Genesis I) Regency Ballroom, Town and Country Resort

31st Conference on Hurricanes and Tropical Meteorology 31 March–4 April 2014, San Diego, California

AMERICAN METEOROLOGICAL SOCIETY

Introduction

- Southwestern Indian Ocean (SWIO) [10% of global TC activity]
- 12 cyclonic seasons [Dec 1999–Mar 2000 to Dec 2010–Mar 2011]
- Region of study [55-100°E, 5-20°S] 🔔 No Madagascar, no Mozambique Channel.

Characterize the pre-cyclonic environment and its variations [before TS; $V_{max} < 17 \text{ m s}^{-1}$] in the SWIO \rightarrow 3 methods

Available data for our study

• ECMWF | ERA-Interim

SST $| 1.5^{\circ} \ge 1.5^{\circ}$ | 12hAtmospheric
variables $| 0.25^{\circ} \ge 0.25^{\circ} | 6h$ | 1000-100 hPa

• ESA | Meteosat-5 (1999→2007) Meteosat-7 (2007→2011)

> Brightness temperature in the water vapour channel $(5.7 - 7.1 \,\mu\text{m})$ TB | 5 km x 5 km | 3h

- NOAA/NCDC | IBTrACS
 - → RSMC La Réunion (Météo-France)
 - \rightarrow Already developed perturbations

Mean climatic conditions in the SWIO

Over 12 seasons

Cyclogenesis in the SWIO generally occurs when: - SST above 27 °C - WSHR below 15 m s⁻¹

Identification of developing TS in ERA-Interim 1st method

An objective analysis from Picornell et al. (2001)

Intraseasonal cyclogenesis index for the SWIO 2nd method

A two-step objective method

Step 2

Optimum linear combination of these selected variables that accurately identifies favorable environmental conditions for cyclogenetic evolution at an intraseasonal time scale

<u>Step 1</u>: Selection of relevant variables

- 12 thermodynamic and dynamic variables
- Probability distribution functions (PDFs) for each variable V_i over the 12 seasons in 2 domains based on 1st method: CGN: points within 500 km of developing cyclonic systems ENV: excluding CGN and points near developed storms and remnants

<u>Step 2</u>: Optimum combination of relevant variables

First component gives a unique combination **Cyclogenesis index y for the SWIO** $\forall n = \{ lat, lon, t \}, C^*(n) \approx \gamma(n) = -0.13 \text{ TB}^*(n) + 0.09 \text{ SST}^*(n)$ $-0.13 \text{ RVOR}^*_{1000-800}(n) - 0.12 \text{ DIV}^*_{1000-800}(n) + 0.13 \text{ RIH}^*_{1000-800}(n)$ $-0.12 \text{ RVOR}^*_{700-500}(n) + 0.14 \text{ RIH}^*_{700-500}(n)$ $+0.11 \text{ DIV}^*_{400-200}(n)$

Coefficient for WSHR^{*}850-200 < 0.01 \rightarrow already favorable?

Example: Wave mode decomposition

Influence of wave modes on cyclogenesis

Percentage of γ and V_i^* variance explained by each of the 6 modes

SEASON DEC2000 – MAR2001

Variable	Weight in γ	Bi- linear	Statio- nary	Wward Slow ER	Wward Fast MRG	Eward Fast Kelvin	Eward Slow MJO	Σ
γ		1	29	27	9	4	26	96
				~70% of the variance of γ in 2000-2001 is controlled by wave phenomena				
TB*	-0.13	1	29	18	7	6	33	94
SST*	+0.09	54	13	21	0	1	13	104
RVOR*1000-800	-0.13	11	19	40	20	6	11	107
DIV*1000-800	-0.12	7	29	28	12	12	17	105
RIH*1000-800	+0.13	3	29	35	11	5	17	100
RVOR*700-500	-0.12	18	19	35	17	5	12	106
RIH*700-500	+0.14	5	27	29	7	2	27	97
DIV*400-200	+0.11	3	29	19	10	11	34	106

Similar results over the 12 seasons in the SWIO: 65% wave phenomena, of which 28% ER, 8% MRG, 6% Kelvin and 23% MJO

≥ 40% ≥ 30%

≥ 20%

Conclusion

- <u>3 objective</u> methods for the SWIO
 - □ Identification of developing cyclonic perturbations in ERA-Interim data
 → A longer cyclogenesis phase
 - Creation of an intraseasonal index as a linear combination of relevant environmental variables
 - \rightarrow Favorable conditions for cyclogenesis
 - □ Space-time spectral analysis on index and relevant variables
 → Links between tropical cyclogenesis and equatorial waves
- Further possible work
 - Other basins? North Atlantic?
 - Other reanalyses? NCEP/NCAR? MERRA?

Thank you.

cherina.meetoo@aero.obs-mip.fr