Origin of Seasonal Predictability for Summer Climate over the Northwestern Pacific

*Yu Kosaka¹, Shang-Ping Xie^{1,2,3}, Ngar-Cheung Lau⁴, Gabriel A. Vecchi⁴

¹Scripps Institution of Oceanography, University of California, San Diego
 ²Ocean University of China
 ³International Pacific Research Center, University of Hawaii
 ⁴Geophysical Fluid Dynamics Laboratory, NOAA

AMS 31st Conference on Hurricanes and Tropical Meteorology Apr 3, 2014

Why are the last echoes of ENSO found in Indo-NWP?

• ENSO peaks in boreal winter, decays by subsequent summer

Why are the last echoes of ENSO found in Indo-NWP?

• ENSO peaks in boreal winter, decays by subsequent summer

The PJIO coupled mode

We show ...

- A new ocean-atmosphere coupled mode
 - Atmosphere: the Pacific-Japan (PJ) pattern
 - Ocean: northern Indian Ocean warming/cooling
- This coupled mode dominates without ENSO, but
- ENSO can trigger this mode \rightarrow last echo & predictability

by using

- GFDL coupled model CM2.1
- Its atmospheric component AM2.1
- Seasonal predictions by 14 coupled prediction models initialized at May 1

Experimental design: GFDL CM2.1 & AM2.1

- AM2.1
 - <u>aCLIM</u>: climatological SST
- CM2.1: SST is restored over the EQ
 eq. Eastern Pacific (ENSO region) 10°S
 e-folding time: 10days for top 50m 20°S
 - NoENSO

- SST is restored toward model climatology (suppress ENSO)
- Pacific Ocean-Global Atmosphere (POGA)
 - SST is restored toward model climatology + historical anomalies
 - 9 members, 1979-2010

aCLIM	atmos. internal	
NoENSO	atmos. internal + air-sea coupled, ENSO-free	
POGA ensemble mean	air-sea coupled, ENSO-forced	

The PJ pattern as an atmospheric internal mode

The coupled mode in NoENSO

> Variance: 40-80% increase, Lag one-month autocorr: $-0.0 \rightarrow 0.2$ (p < 0.05)

IO warming coupled with the PJ pattern in NoENSO

The Kelvin wave signal is missing in the atmospheric internal mode

Feedback in the PJ-IO mode: Inter-basin interactions

- LBM (Watanabe and Kimoto 2000) experiments

Lead-lag correlations of ocean and atmosphere anomalies

- Cross-correlations of the PJ pattern and SST anomalies in NoENSO
- Positive ocean-atmosphere feedback --> Correlation will peak at zero lag
- Negative

change sign

The cross-correlations strongly suggests positive o-a feedback

Triggering of the PJIO mode by ENSO in POGA

 ENSO can force the PJIO mode in its decay summer by inducing IO warming as an initial perturbation

Seasonal predictions

- I4 seasonal prediction models (CliPAS & DEMETER) initialized on May 1st each year
- SVDIs of NWP 850hPa vorticity and northern IO SST in JJA

Structural similarity again indicates the internal coupled mode

Seasonal predictability

Variance components of the PJ pattern in CM2.1/AM2.1 experiments

ENSO-forced, air-sea coupled		39.2%	POGA ensemble mean
non ENSO-forced	air-sea coupled	24.5%	NoENSO
	atmospheric internal	36.3%	aCLIM

- The three variance components are comparable
- ENSO-forced component is predictable (even statistically; ~40%)
- Additional predictability from non-ENSO-forced but air-sea coupled component (~25%)

Example: For 5 weak/no ENSO summers, MME of seasonal predictions can hindcast the observed PJ events with r = 0.85

Summary: the PJ-IO mode and predictability

- A new ocean-atmosphere coupled mode in the summer NWP (the PJ-IO mode)
 - Atmosphere: the PJ pattern
 - Ocean: northern Indian Ocean warming/cooling
 - Inter-basin interactions through atmospheric Rossby and Kelvin waves
- This mode dominates without ENSO, but
- ENSO can trigger this mode \rightarrow last echo & seasonal predictability
- The coupled mode enables ENSO to induce its last echoes in the summer IO-NWP
- Additional predictability from coupled model with IO initialization

Kosaka et al., 2013: Origin of seasonal predictability for summer climate over the Northwestern Pacific. *PNAS*