Improving Tropical Cyclone Track and Intensity Forecasting with JPSS Imager and Sounder Data

Galina Chirokova¹ Mark DeMaria² Robert DeMaria¹ Jack Dostalek¹

 $^1\text{CIRA/CSU},$ Fort Collins, CO $~^2\text{NOAA/NWS/NCEP},$ National Hurricane Center, Miami, FL

AMS 31st Conference on Hurricanes and Tropical Meteorology March 31 - April 4, 2014

Introduction

Project goal:

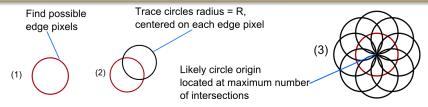
to improve tropical cyclone forecasts by utilizing new capabilities provided by JPSS SNPP (launched Oct, 2011)

- Use data from two SNPP instruments
 - Visible Infrared Imager Radiometer Suite (VIIRS)
 - Advanced Technology Microwave Sounder (ATMS)
- Two basic methods exists for improving tropical cyclone forecasts with SNPP:
 - assimilate data in numerical forecast models
 - improve analysis and statistical post-processing forecast products
- $\bullet\,$ Our group is developing two applications focusing on the 2^{nd} approach
 - Develop automated center-fix method
 - Improve RII, SHIPS and LGEM forecasts

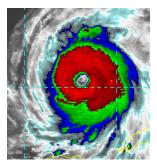
Improve center location estimates

Motivation:

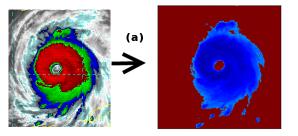
- Aircraft reconnaissance only available in west Atlantic (about 30% of AL TC forecasts) and around Hawaii
- Center fix is usually the first step in the forecast process
- Accurate center estimate impacts all downstream forecasts
- Nearly all existing center fix methods are subjective

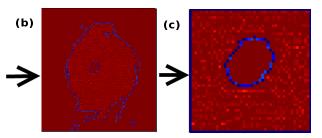

- Exception: CIMSS ARCHER method that fits spiral patterns to microwave imagery from LEO satellites

- Many more geostationary images than center fixes
- Automatic method for estimating tropical cyclone location from imagery is highly desirable

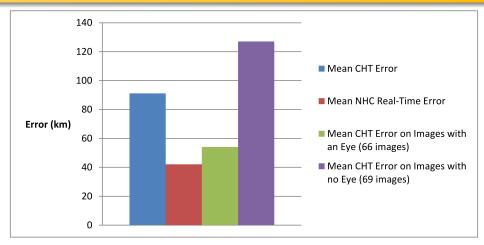

Ouse image processing techniques to develop an objective center fixing algorithm from visible and IR data:

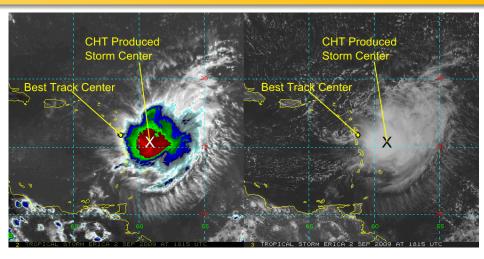
- Field of computer vision deals with extracting features from imagery
- Use of Circular Hough Transform (CHT) for automatic center-fixing is investigated


Circular Hough Transform (CHT)



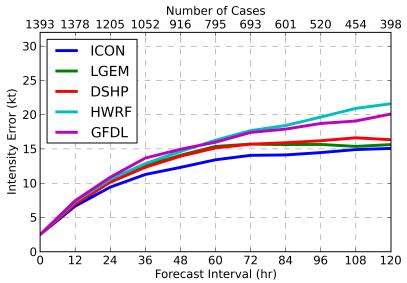
• If R is not known, perform CHT for range of R. Select R, origin from max number of intersections


CHT: Hurricane Katrina


- Threshold IR image to isolate clouds
- Use Laplacian to detect edge pixels
- If #(edge pixels) near estimated storm center > threshold,
 ⇒ eye is present ⇒ reduce image to smaller area
- Perform CHT

CHT: Results

- 135 Images from Sandy, Earl, Erika, Charley, Katrina
- Mean CHT error: 91 km; for storms with eye: 54 km
- Bias X: 6km, Bias Y: 8.5 km; Bias explained by Parallax

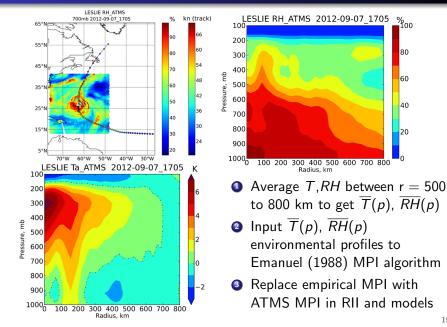

CHT: TC Erica

• In the case of sheared storm center of the coldest clouds is found instead of the storm center

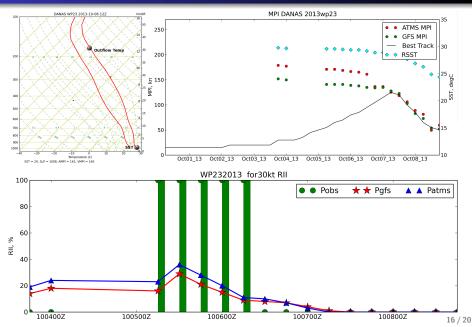
Improving RII and LGEM forecast

2009-2013 Mean Atlantic Intensity Errors

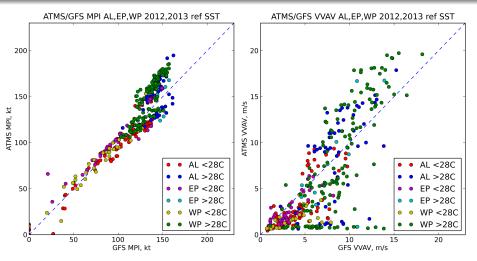
Maximum Potential Intensity (MPI) Estimates


- Statistical models, SHIPS and LGEM, use Maximum Potential Intensity (MPI) as one of the key parameters
- Currently MPI is statistically calculated from SST only
- Use ATMS-MIRS T,Q,SLP retrievals together with SST to estimate MPI from ATMS and SST using algorithm by Emanuel (1988), Bister and Emanuel (1998):

$$(MPI)^2 = \frac{T_s - T_o}{T_o} \frac{C_k}{C_D} (k^* - k)$$


 T_s, T_o, k^* and k: estimated from SST, sounding C_k/C_D : specified ratio of surface exchange coefficients

- Incorporate improved MPI estimates into :
 - Rapid Intensification Index (RII)
 - 2 Logistic Growth Equation Model (LGEM)
 - **③** Statistical Hurricane Intensity Prediction Scheme (SHIPS) Model


Temperature and RH profiles: Leslie

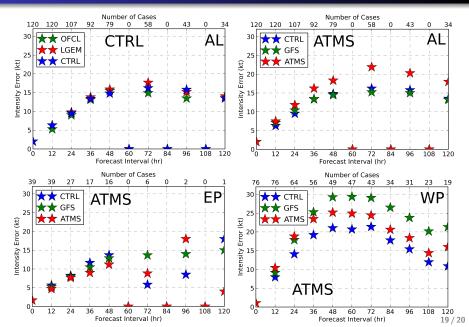
RII with ATMS MPI: WP232013 Danas

MPI and VVAV: ATMS vs GFS profile

• T,q profiles calculated by azimuthally averaging T,q at 200 \div 800km

• All other parameters same as operational, including weekly Reynolds SST

RII Statistics: GFS vs ATMS


Basin		BS	BS	BS	BSS	BSS	BSS	Bias	Bias	# Cases	#RII
		GFS	ATMS	Mean	A/G	G/M	A/M	GFS	ATMS		
AL	25kt	964.55	957.98	854.27	0.68	-12.91	-12.14	1.63	1.44	130	13
	30kt	723.53	718.46	667.83	0.70	-8.34	-7.58	1.30	1.15	130	10
	35kt	477.11	467.65	413.10	1.98	-15.49	-13.20	1.26	1.00	130	6
	40kt	248.40	243.55	211.88	1.95	-17.24	-14.95	1.63	1.37	130	3
WP	30kt	1044.39	996.30	1586.00	4.60	34.15	37.18	0.56	0.61	176	31

Statistics is preliminary: based on very small number of cases

2 AL

- Brier Score: ATMS < GFS
- Brier Skill Score: ATMS/GFS > 0
- Bias: ATMS better than GFS
- EP: only 1 (one) RI cases available, unable to calculate statisticsWP
 - Brier Score: ATMS < GFS
 - Brier Skill Score: ATMS/GFS > 0
 - Bias: ATMS better than GFS

LGEM Intensity Verification

Conclusions and Future Plans

Center Fix - CHT

- Good for storms with eye, bad for sheared storms
- Accumulation matrices may be useful for eye detection
- Future Plans
 - Use CHT from IR data as first guess for visible algorithm
 - Combine CHT with other information (shear vector, MW, DNB)

Improving RII and LGEM forecast

- ATMS data provide more realistic TC structure than AMSU
- RII: for AL, EP, WP forecast is slightly improved
- LGEM, SHIPS Intensity forecast: AL worse; WP,EP better in some cases
- Future Plans
 - Get more ATMS data for further testing and reliable statistics
 - Use combination of GFS and ATMS data to obtain most realistic soundings