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INTRODUCTION

Organised deep convection is a critical process in the climate system, providing half the rainfall in the tropics and often producing intense precipitation. As convection cannot
be resolved in global climate models (GCMs), it has to be represented through parametrisation schemes, which do not explicitly account for convective organisation.
Nonetheless, GCMs still produce high-topped and optically thick clouds, which in observation are a signature of organised deep convection. Does the presence of these
clouds imply that GCMs can represent organised deep convection? To investigate this, we compare the precipitation rates and grid-mean vertical motion of these clouds

between observation and GCMs.

OBSERVATION MODELS
+  cloud regimes are an objective categorisation of 1;8 i » use AMIP experiments in the CMIP5 database with the following variables:
ISCCP cloud fields at 2.5° daily (Jakob and OE, 131218: : » clisccp: ISCCP cloud area fraction
Tselioudis, 2003; Rossow et al., 2005) % gg(g); | | » pr: precipitation at surface
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convection (Fig. 1)
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Fig. 1: Joint-histogram of the CR1
regime, which in observation , ,
reﬁresents organised deep cloud fields to observed regimes based on mean albedo, mean cloud top

convection.

GCMs: CanAM4, GFDL-CM3, HadGEM2-A, IPSL-CM5B-LR, MIROC5, and MPI-ESM-LR

(P) from GPCP and grid-mean vertical motion model regimes are defined following Williams and Webb (2008): assign clisccp
rom an -

(w) at 850 hPa, 500 hPa and 200 hPa from ERA-

Interim (similar to Tan et al., 2013) pressure and total cloud cover

» restrict to ocean-only grid boxes between 35°N/S and from 2004 to 2008 composite model CR1 with model variables similar to observation

PRECIPITATION AND DYNAMICS
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Fig. 2: distributions of the properties of the CR1 7!
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CORRELATION OF ERRORS
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+  given that w and P are variables closely related to convective parametrisation schemes, it is possible that these high-topped and = ) 5 6 5
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unrelated to convective organisation error in mean P (mm / day)
o this highlights the need to account for convective organistion in parametrisation schemes Fig. 3: scatter diagram between the mean errors in P

against w at various heights (green: 200 hPa; red: 500
hPa; blue: 850 hPa). Error = model - observation.

CONCLUSION
*  GCMs produce the cloud regime CR1, which in observation represents organised deep convection

» however, the precipitation rates of CR1 in models are too low and the grid-mean vertical motions are too strongly ascending

+ these errors are moderately to strongly correlated, with models that overestimate ascending motion doing less bad in precipitation

» this implies that organised deep convection is poorly represented in GCMs and parametrisation schemes need to account for organisation
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