Introduction

Most intense tropical cyclones (TCs) such as Categories 4 and 5 (Saffir-Simpson Hurricane Scale) undergo rapid intensification (RI). However, the physical mechanisms associated with RI and the inner-core processes have not been fully understood. The purpose of this study is to examine the impacts of ice-phase microphysics and boundary layer processes on the inner-core processes of an extremely intense TC by using two types of 2-km mesh non-hydrostatic models (NHM2).

1. **Model descriptions of 2 NHMS**

JMANHM: The Japan Meteorological Agency operational mesoscale model (Saito et al. 2007)

CReSS: Cloud Resolving Storm Simulator developed in HyARC, Nagoya University (Tsuboki and Sakakibara 2002)

2. **List of sensitivity experiments**

<table>
<thead>
<tr>
<th>Model</th>
<th>Name</th>
<th>Turbulence cloud microphysics vertical level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCM</td>
<td>AGCM20</td>
<td>863 79 -38</td>
</tr>
<tr>
<td>2dLK</td>
<td>MPD</td>
<td>852 77 -60</td>
</tr>
<tr>
<td>2dLK64</td>
<td>MPD</td>
<td>854 79 -75</td>
</tr>
<tr>
<td>2dCRS</td>
<td>MPD</td>
<td>852 82 -84</td>
</tr>
<tr>
<td>2dCRSDB</td>
<td>MPD</td>
<td>860 77 -85</td>
</tr>
</tbody>
</table>

All NHMS experiments underwent RI.

3. Initial and boundary conditions

The results of the climate experiments by a 20-km mesh atmospheric general circulation model (AGCM20).

A case of an extremely intense TC

Maximum central pressure (MCP): 863 hPa

4. Results

i) Tracks and intensities

<table>
<thead>
<tr>
<th>Model</th>
<th>MCP</th>
<th>MWS</th>
<th>MPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCM20</td>
<td>863</td>
<td>79</td>
<td>-38</td>
</tr>
<tr>
<td>2dLK</td>
<td>852</td>
<td>77</td>
<td>-60</td>
</tr>
<tr>
<td>2dLK64</td>
<td>854</td>
<td>79</td>
<td>-75</td>
</tr>
<tr>
<td>2dCRS</td>
<td>852</td>
<td>82</td>
<td>-84</td>
</tr>
<tr>
<td>2dCRSDB</td>
<td>860</td>
<td>77</td>
<td>-85</td>
</tr>
</tbody>
</table>

ii) General characteristics

- Time variations of MCP

iii) RI1 stage

- Hourly precipitation

iv) Vertical cross-sections

- Compact TC
- Large eye
- Small eye
- Broad TC

v) Mature stage

- Hourly precipitation

vi) Hormoller diagrams for topographical experiments

- Azimuthally averaged vertical velocity and qg (z=10km) and relative humidity at q (z=28km)

vii) RI2 stage

- Hours precipitation

viii) Vertical cross-sections

Appendix

K-Vmax diagram

5. Summary

- i) In all experiments by NHM2s, TCs underwent RI.
- ii) Cloud microphysics and ERC;
 - CReSS with a 1-moment microphysics: w/o ERC
 - All experiments with a 2-moment microphysics: with ERC
- iii) Favorite situations for intense RI;
 - Tall and intense updraft, an asymmetric small eyewall and shallower inflow boundary layer with intense near-surface inflow.
- iv) Cloud microphysics and the horizontal scale;
 - Gruzelier-dominated experiments (CReSSs): A compact TC with large eye.
 - Snow-dominant experiments (JMANHMs): A broad TC with small eye.

The cloud microphysics and PBL processes are closely related to the inner-core structures and evolutions of simulated extremely intense TCs.

Even TCs with similar MCP or MWS, the characteristics of the TCs (including the inner-core and horizontal expansions) differ among NHMS.

Issues to be solved in the future

- RI or not: Why can only NHM2ksms realize RI? i.e. the processes or structures for RI that only NHM2ksms can represent [AGCM20 vs NHM2ksms]
- Favorite conditions for intense RI: Relationship between RI and the inner-core structures (e.g. tall and intense updraft around the eye, an asymmetric small eyewall and shallower inflow boundary layer with intense near-surface inflow) [CReSSs vs JMANHM]

Acknowledgments

This study was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan under the framework of the Science Program. Numerical simulations were performed using the Earth Simulator.

Corresponding author: Sachie KANADA
Hydrospheric, Atmospheric Research Center (HyARC), Nagoya University, Furo-chou, Chikusa-ku, Nagoya, 464-8601
e-mail: skanada@rin.nihi.yarc.nagoya-u.ac.jp*