Verification of Tropical Cyclone Genesis Prediction in a Suite of Operational Global Numerical Weather Prediction Models

Mike Fiorino

michael.fiorino@noaa.gov
Commander, United States Navy (retired)

B.S. ('75 PSU), M.S. ('78 PSU), Ph.D. ('87 NPS) all in Meteorology

NOAA ESRL Boulder CO 5 April 2014

Verification of Tropical Cyclone Genesis Prediction in a Suite of Operational Global Numerical Weather

Prediction Models

Mike Fiorino

michael.fiorino@noaa.gov Commander, United States Navy (retired) B.S. ('75 PSU), M.S. ('78 PSU), Ph.D. ('87 NPS) all in Meteorology

> NOAA ESRL Boulder CO 5 April 2014

The Riehl Reason I'm doing TC genesis as an answer to The Question...

The Question...

when giving a seminar at CSU in the 1980/90s...

"This is all well and good Mike...

The Question...

when giving a seminar at CSU in the 1980s...

"This is all well and good Mike... but why (on earth) are you doing this? *#%!!"

"This is all well and good Mike... but why (on earth) are you doing this? *#%!!"

Uncle Bill Gray

"This is all well and good Mike... but why (on earth) are you doing this? *#%!!"

Uncle Bill Gray

a.k.a 日本でときどき

"Beer Glay"

WARNING! WARNING! WARNING!

The State Department has determined that the following slide contains subtle and possibly silly British humour. Americans, especially those with small children, are cautioned...

because Bob Gall (HFIP) "asked" me to...

because Bob Gall (HFIP) "asked" me to... so "Bob's Your Uncle!"

The Riehl Answer does come from operations...

as expressed in the JTWC watch phrase of the early 1980s

slide 10

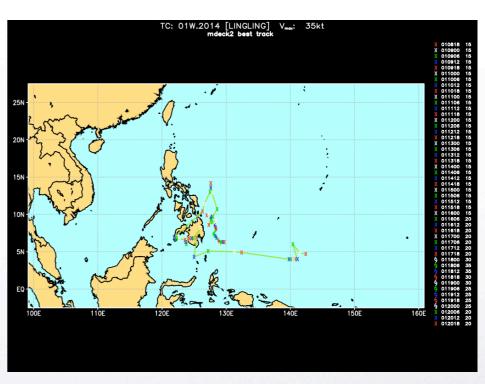
because Bob Gall (HFIP) "asked" me to... so "Bob's your uncle!" The TCAD principle – namely:

Bob Gall (HFIP) "asked" me to...
so "Bob's your uncle"
The TCAD principle – namely:
Tropical Cyclones Are Diagnostic

Bob Gall (HFIP) "asked" me to...
so "Bob's your uncle"
The TCAD principle – namely:
Tropical Cyclones Are Diagnostic
"You can observe a lot just by watching"

Bob Gall (HFIP) "asked" me to...
so "Bob's your uncle"
The TCAD principle – namely:
Tropical Cyclones Are Diagnostic
"You can observe a lot just by watching"

Typhoon Come All Die!!!



"The models are getting downright phenomenal in their skill and usefulness. Several days ago, the NVG and GFS began picking-up on 91W making it to the Philippines, and these two models have been (somewhat) consistent in track and timing ever since."

Mark Lander, UofGuam in an email to tstorm.org list on 2014010909

```
2014010818
              A1W.2014 015 --- 4.7 142.4E --- -- 303.1 11.9 B NT NW --- 1/38 1f: 0.00
             AlW.2014 015 --- 4.8 141.5E --- -- 303.1 11.9 B NT NW --- 2/38 1f: 0.00
2014010900
2014010906
             A1W.2014 015 --- 6.0 140.4E --- -- 303.1 11.9 B NT NW --- 3/38 1f: 0.00
2014010912
2014011706*
             A1W.2014 020 1007 9.7 127.9E --- -- 230.0 2.0 C DB NW --- 35/38 1f: 0.00 INVEST
2014011712*
              A1W.2014 020 1007 9.7 127.6E --- -- 255.0 2.0 C DB NW --- 36/38 1f: 0.00 INVEST
                                                                                                < **Genesis
2014011718*
              A1W.2014 020 1005 9.9 127.0E --- -- 280.0 4.0 C DB NW --- 37/38 1f: 0.00 INVEST
                                                                                                < **Genesis
             AlW.2014 030 1000 9.9 127.3E --- -- 304.1 1.8 B TD NW --- 38/38 1f: 0.00
2014011800*
                                                                                                < **Genesis
2014011806*
              01W.2014 035 996 8.9 127.8E --- -- 156.3 4.9 B TS WN TJM 20/30 1f: 0.00 LINGLING <**Genesis
              01W.2014 035 996 8.4 128.3E --- --- 138.1 7.4 B TS WN TJM 21/30 lf: 0.00 LINGLING <**Genesis
2014011812*
2014011918
              01W.2014 025 1004 6.6 128.7E --- --- 140.4 3.9 B TD WN SJB 26/30 1f: 0.00 LINGLING
2014012000
              01W.2014 025 1008 6.3 129.0E --- --- 135.2 4.2 B TD NW --- 27/30 1f: 0.00 LINGLING
2014012006
              01W.2014 020 1004 6.3 129.2E --- -- 121.1 2.9 B TD NW --- 28/30 1f: 0.00 LINGLING
2014012012
              01W.2014 020 1004 6.3 129.5E --- -- 90.0 2.5 B TD NW --- 29/30 1f: 0.00 LINGLING
             01W.2014 020 1007 6.3 129.7E --- -- 90.0 2.5 B TD NW --- 30/30 1f: 0.00
2014012018
2014 01W TS LINGLING : 35 : 3.2; 7.2 : 8.9 127.9 : 010818<->012018 : 6.3<->11.9 :126.3<->129.7 : 0.8 : 0.1 : 0: 0: 0:
tG:222 9X: 91W 1st: 011800
```


- 01W.2014 was 91W for 222 h before JTWC issued 1st warning
- similar to observations of the NHC specialists 2006-2008 that if the big three models (GFS/ECMWF/UKMO) forecast the formation of a cyclone, in a similar location, then...

ingredients of the TCgen2 model diagnostic system

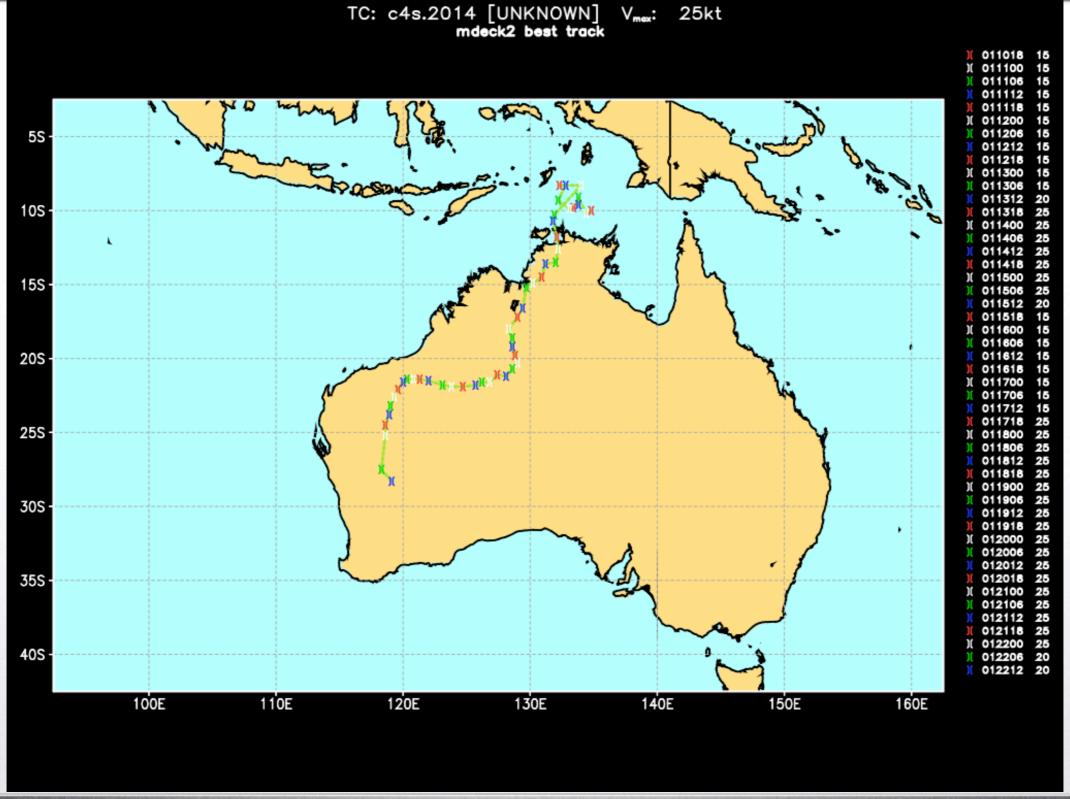
http://ruc.noaa.gov/hfip/tcgen (password protected, .com excluded) slide 15

- TIM (TCs In Models) cyclone tracker Marchok, GFDL
 - tracker mode track cyclones from an initial position in the initial conditions (a priori)
 - genesis mode find and track cyclones during the integration (a posteriori)
 - ▶ measure of model cyclone strength "scaled Tropical Depression days" (sTDd)
- Genesis definition operational per NHOP/PACOM
 - ▶ 30-h window around the first advisory(NHC)/warning(JTWC) to give the 00/12 UTC models three shots at the foul line to forecast genesis
- TC demographics of ?TCs and SPURious hurrICANES
- Scheme to match model cyclones (genesis & tracker) to real ?TCs
 - ▶ closeness defines a 'hit' or correct forecast compare positions of ?TCs to model TCs within a 24-h window ending at the forecast tau, e.g., 60-84 h for the D+3 forecast
 - ▶ a bit of an accounting nightmare...with so many possible model v real TC comps
- Weather maps + model diagnostics
 - > sanity check the tracker and matching scheme; synoptic evaluation
 - > basin-wide, over-ocean precipitation + ratio of convective/total precip

The Models 2009-2013 May-October (~8 Tb)

ATCF ID	Model	Resolution circa 2013	Comments
AVNO	GFS T574L64	27 km L64	3DVAR-EnKF Hybrid/GFS 2012 physics
FIM8	FIM G8	30km L64	3DVAR-EnKF Hybrid/2011 GFS physics, dynamical core improves
FIM9	FIM G9	15 km L64	same as FIM8 except higher res
CGD6/CMC2	CMC GDPS	25 km L79	major update in 201305; 4DVAR
UKM2	UKMO UM	~32 km L70	upcoming major upgrade in 201405, 4DVAR
NGPC/NAVG	NOGAPS NAVGEM	37 km L50	4DVAR-AR; SL dynamical core/GFS cumulus
ECMT/ECM2	ECMWF HRES	16 km L137	IFS cycle 38r2 (25 JUN 13) increased vertical res; sfc drag; shallow cu

TC Demographics


pTCs, TCs, mTCs, aTCs and the SPURICANE

Туре	Naming	Features								
TC	01-49 numbered TCs 01W.2014 TC#I in WESTPAC in 2014	tropical cyclone as analyzed by JTWC/NHC ATCFTC designations: TD,TS,TY, HU, STY, [SD, SS] ATCF non-TC designations: PT, XT, ET								
pTC	9X or INVEST systems 94S.2014 – the landphoon over eastern OZ	pre/potential TC as analyzed by JTWC/NHC ATCF designations: LO, DB, WV Database of pTCs in WPAC/SHEM/IO 1999-2013; LANT/EPAC 2006-2013								
mTC	TGNNNN NN or 9X	model cyclone from a tracker genesis mode – 1.5 mb center-outer deficit								
аТС	TGNNNN	initial mTC that the model maintains for >= 24 h into the forecast, not associated with a TC/pTC								
SPURICANE	TGNNNN	 I. mTC that <u>cannot be associated</u> with a TC, pTC, aTC II. mTC <u>associated</u> with a <u>dissipated</u>?TC 								

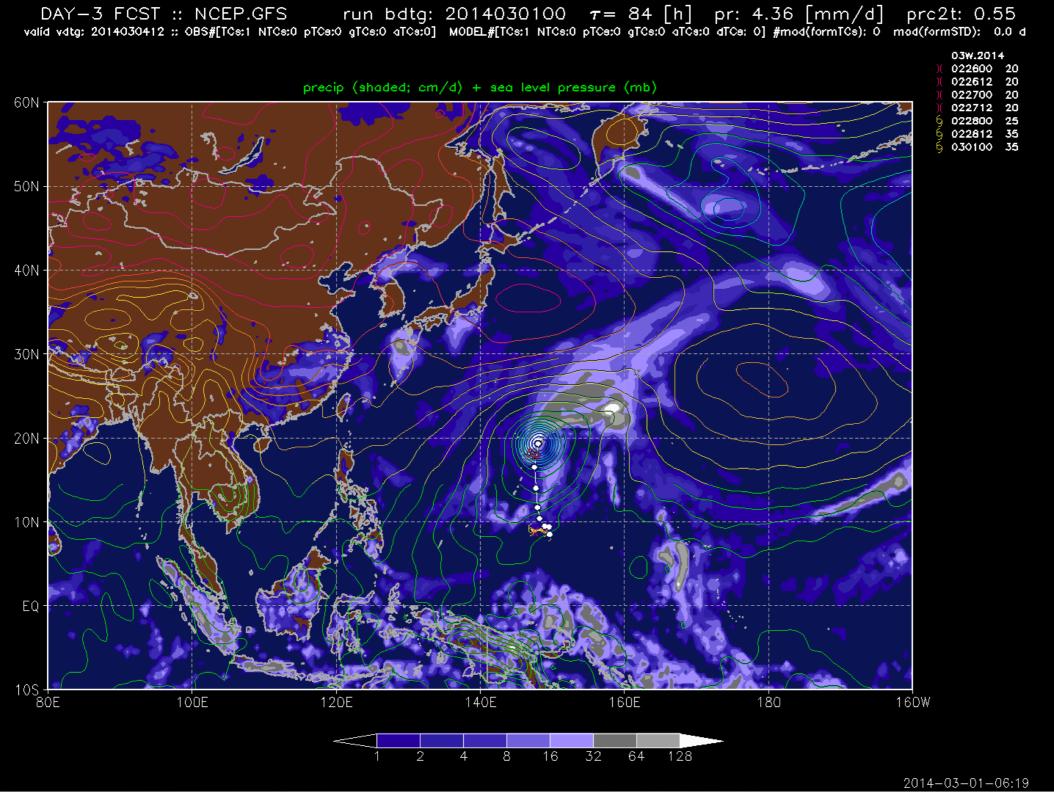
C4S.2014 (the 3rd 94S pTC) – OZ Landphoon slide 18



TCgen2 – front page – FCST mode – forecasting

http://ruc.noaa.gov/hfip/tcgen

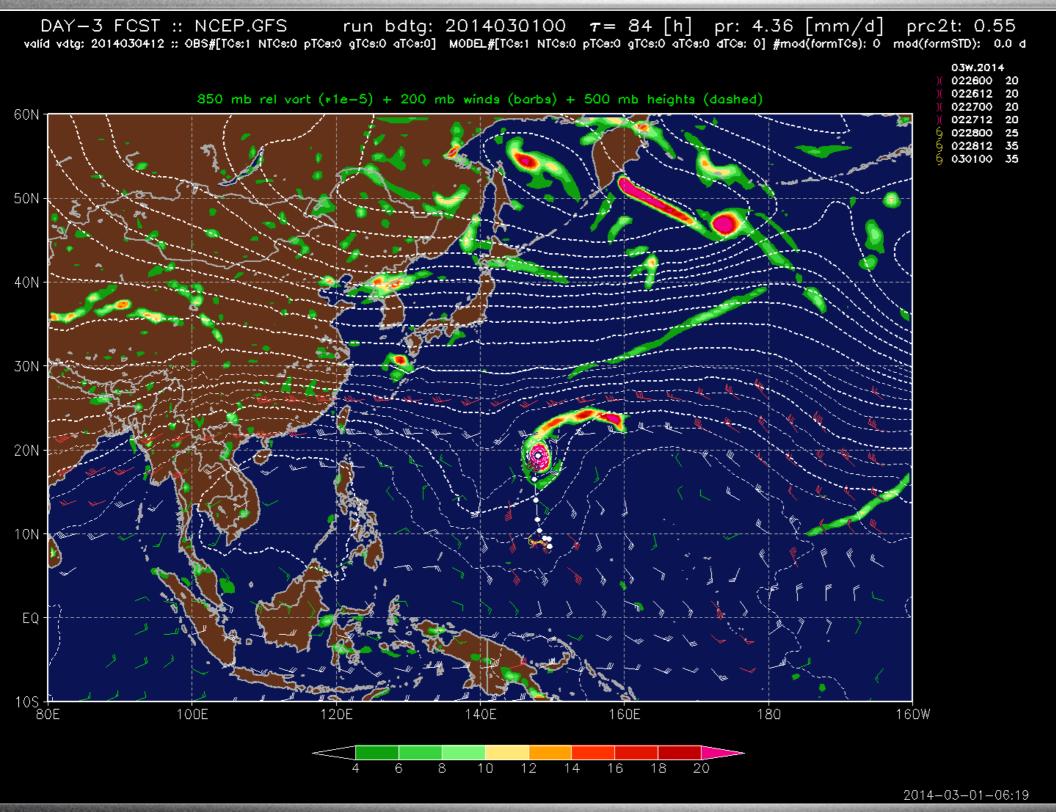
slide 19



- 7 global NWP models
- +12 h model forecast for consistency with forecast e.g, day+2 (D2) uses 36-60 h model forecast
- tropical, oceanonly precip stats for model diagnostics...
- model and observed ? TCs
- FCST (forecast) & VERI (verification) modes
- single model or loop mode

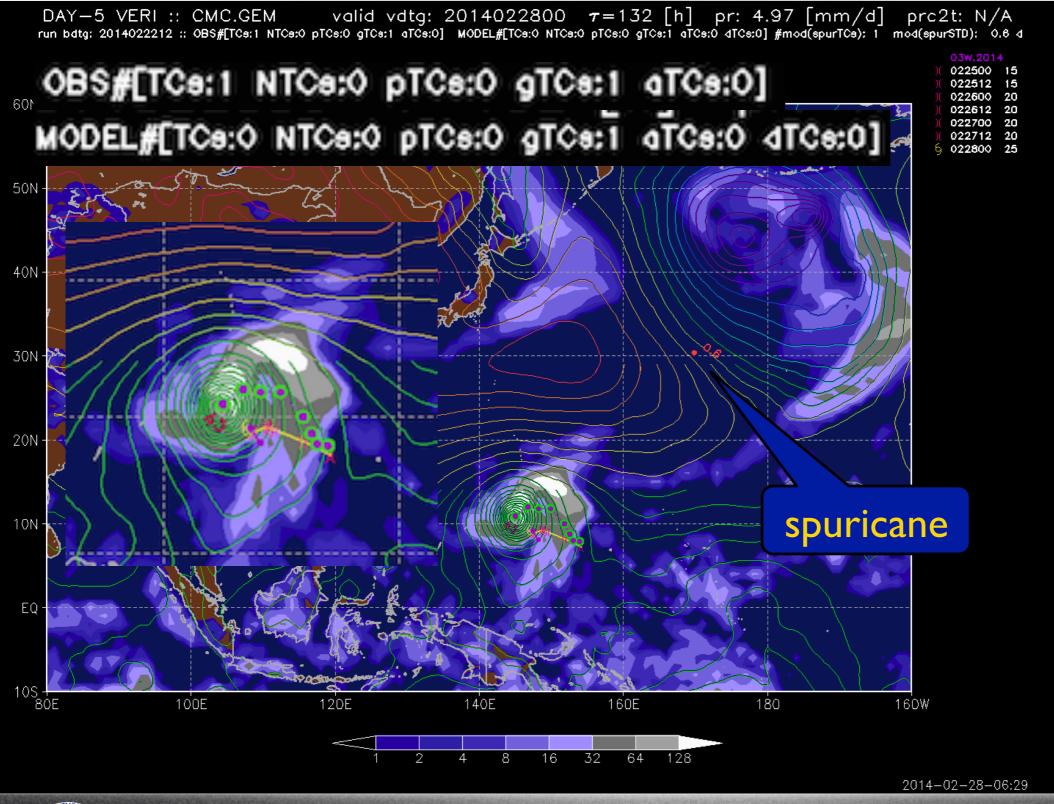
slide 20

- ?TCs & genesis/IC trackers
- thermo (precip) and mass (sea-level pressure)
- D3 forecast (tau 84) for 03W verifying today (030412)

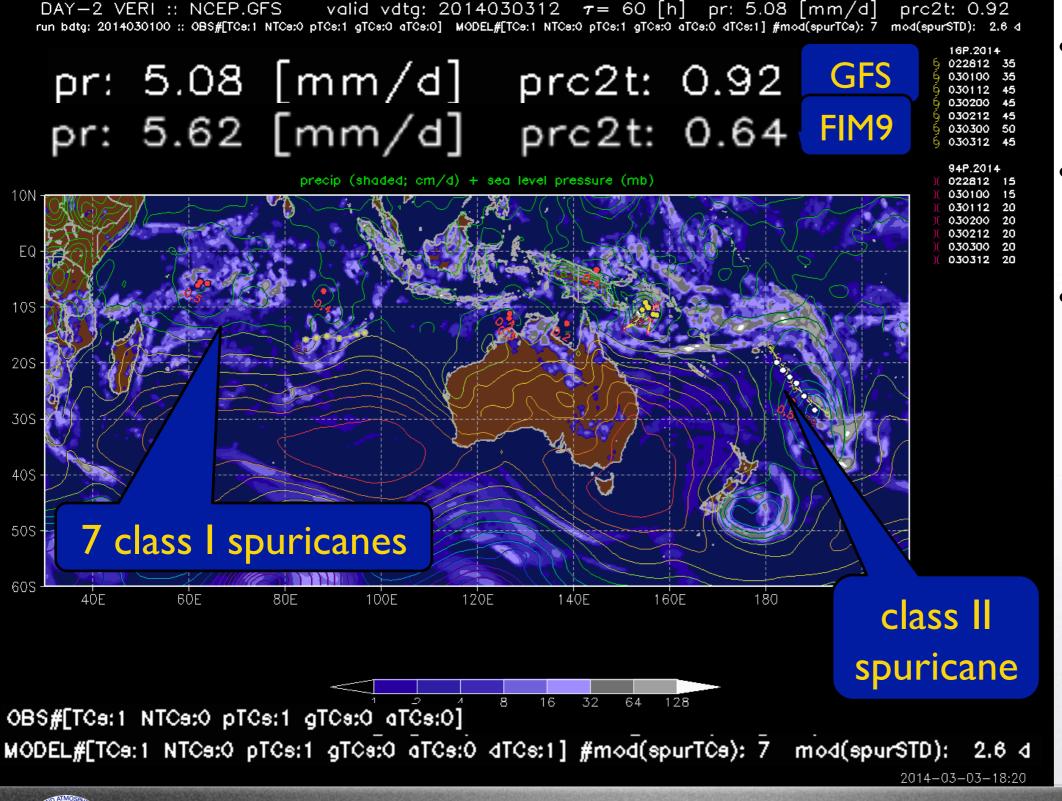


TCgen2 – two WxMAP2 products: dynamical (NHC 850 McAdie chart)

http://ruc.noaa.gov/hfip/tcgen



- dynamics 850 mb relative vorticity
- mass 500 mb heights – STR & breaks
- dynamics 200 mb
 wind shear


- first JTWC warning for 03W on 2014022800 – genesis
- 'near enough' to
 03W to be declared
 a 'hit' of genesis
 forecast Vmax=43
 kt
- spuricane on top of tropical band

http://ruc.noaa.gov/hfip/tcgen

slide 23

- GFS correctly forecasts both TC I6P and pTC 96P
- 7 class I spuricanes but sTDd <= 0.5 d
- model maintained a
 TC that
 dissipated –
 class II
 spuricane

TCgen2 – seasonal verification – atLANTic 2013 – D+2 & D+5

http://ruc.noaa.gov/hfip/tcgen

slide 24

										Silde Z I
TCgen Stats :: Gentau: 60 [h] Basin: ESRL.FIM9, UKMO.UM								/GEM,	box color	key
Storm	CMC.GEM	ECMWF.IFS	ESRL.FIM	NCEP.GFS	FNMOC.NAVGEM	ESRL.FIM9	UKMO.UM			
01L.2013 [TS 055 kt] ANDREA	3/3.1	3/ 2.0	2/ 1.1	2/ 1.7	0/	2/ 1.5	2/ 1.9	86		no model run
02L.2013 [TS 040 kt] BARRY	0/	0/	1/ 0.4	0/	0/	1/ 0.5	0/	29	-1/	
03L.2013 [TS 055 kt] CHANTAL	0/	0/	0/	0/	0/	0/	0/			
04L.2013 [TS 050 kt DORIAN	3/ 1.4	1/ 0.9	1/ 0.5	2/ 1.0	2/ 0.6	1/ 0.5	1/ 0.3	100	0.1	0 forecasts of
05L.2013 [TS 035 kt ER N	1/ 0.3	1/ 0.3	1/ 0.5	1/ 0.5	1/ 0.4	0/	1/ 0.3	86	0/	_
06L.2013 [TS 050 kt FE IN AD	0/	0/	0/	0/	1/ 0.9	0/	0/	14		genesis
07L.2013 [TS 050 kt GABRIELLE	3/ 2.6	3/ 1.5	3/ 2.0	3/ 2.3	3/ 1.8	2/ 1.6	3/ 2.0	100	1/05	I of 3 forecast
08L.2013 [TD 030 kt] EIGHT	0/	2/ 0.6	0/	3/ 1.7	0/	0/	0/	29	1/ 0.5	
09L.2013 [HU1 075 kt] HUMBERTO	2/ 0.6	3/ 1.3	2/ 1.3	2/ 1.3	0/	2/ 1.0	2/ 1.2	86		verified
10L.2013 [HU1 075 kt] INGRID	1/ 0.5	3/ 0.9	2/ 1.1	2/ 0.6	2/ 1.0	3/ 1.6	1/ 0.4	100	2/ 1.5	2/3 forecasts
11L.2013 [TS 045 kt] JERRY	0/	0/	1/ 0.5	0/	0/	1/ 0.6	0/	29		
12L.2013 [TS 055 kt] KAREN	0/	1/ 0.3	1/ 1.0	1/ 0.7	3/ 1.8	-1/	2/ 0.8	83		verified
13L.2013 [TS 045 kt] LORENZO	0/	1/ 0.3	0/	0/	1/ 0.7	0/	0/	29	3/ 3.6	3/3 forecasts
14L.2013 [TS 055 kt] MELISSA	3/ 4.0	2/ 2.4	2/ 2.6	2/ 2.6	2/ 2.4	2/ 2.6	2/ 2.2	100	3/ 3.0	
bottomline by model	50	71	71	64	57	62	57			verified
										00/
TCgen Stats :: Gentau: 132 [h] Basin:	I ANT Voc	r: 2013 Mod	lele: CMC (SEM ECMV	E TEC ECDI ETM	NCED GES	ENMOC N	NVCEM		0%
ESRL.FIM9, UKMO.UM	LANT TEG	1. 2013 1400	iels. Ciric.	SEIT, ECITIV	r.irs, Eske.rin	, NCEP.GF3	, FINITIOC.IV	AVGEN,	14	< 25 %
Storm	CMC.GEM	ECMWF.IFS	ESRL.FIM	NCEP.GFS	FNMOC.NAVGEM	ESRL.FIM9	UKMO.UM			
01L.2013 [TS 055 kt] ANDREA	3/ 3.0	3/ 1.6	1/ 0.3	3/ 2.2	1/ 0.2	1/ 0.7	0/	86		
02L.2013 [TS 040 kt] BARRY	2/ 0.6	2/ 0.8	3/ 0.9	1/ 0.4	0/	3/ 1.0	1/ 0.7	86	29	25 >= % < 75
03L.2013 [TS 055 kt] CHANTAL	0/	0/	0/	0/	0/	0/	0/			
04L.2013 [TS 050 kt] D JRI N	2/ 0.8	0/	0/	1/ 0.4	0/	0/	0/	29	83	>= 75
05L.2013 [TS 035 kt] E IIV	0/	0/	0/	3/ 1.2	0/	1/ 0.5	0/	29		, -
06L.2013 [TS 050 kt] FERNAND	0/	1/ 0.4		1/ 0.4	0/	0/	0/	29		
07L.2013 [TS 050 kt] GABRIELLE	3/ 3.7	2/ 0.7	1/ 0.5	2/ 1.5	2/ 1.1	0/	3/ 2.0	86		
08L.2013 [TD 030 kt] EIGHT	0/	0/	0/	2/ 0.7	1/ 0.5	0/	0/	29		
09L.2013 [HU1 075 kt] HUMBERTO	3/ 1.9	3/ 1.3	0/	2/ 1.6	1/ 0.2	2/ 1.5	3/ 1.5	86		
10L.2013 [HU1 075 kt] INGRID	2/24	1/ 0.3	0/	3/ 1.5	0/	0/	0/	29		
11L.2013 [TS 045 kt] JERRY 12L.2013 [TS 055 kt] KAREN	2/ 2.4	1/02	0/	2/15	3/ 1.7 0/	-1/	1/ 0.5	29 83		
13L.2013 [TS 045 kt] KAREN 13L.2013 [TS 045 kt] LORENZO	2/ 1.4 3/ 3.0	1/ 0.2 0/	2/ 2.3 0/	2/ 1.5 0/	0/	0/	0/	14		
TOLIZOTO [TO OTO KC] CONCINZO	5/ 5.0			•	-		-	17		

14L.2013 [TS 055 kt] MELISSA

bottomline by model

2/ 2.0

100

2/ 2.0

TCgen2 – seasonal verification – WPAC 2013 – D+2 & D+5

http://ruc.noaa.gov/hfip/tcgen

slide 25

TCgen Stats :: Gentau: 60 [h] Basin: ESRL.FIM9, UKMO.UM			eis: CMC.G				FNMOC.NA	VGEM,	n Stats :: Gentau: 132 [h] Basir .FIM9, UKMO.UM	n: WPAC Yea	ar: 2013 Mo	deis: CMC.C	EM, ECMW	VF.IFS, ESRL.FI	M, NCEP.GS	, FNMOC.N	AVGEM,	box color	key
01W.2013 [TS 045 kt] SONAMU 02W.2013 [TD 025 kt] SHANSHAN	-1/	-1/	-1/	-1/ 1/	-1/	-1/	-1/		Storm 2013 [TS 045 kt] SONAMU 2013 [TD 025 kt] SHANSHAN	-1/	-1/	-1/	1/	-1/	-1/	-1/ -1/		-1/	no model run
03W.2013 [TS 055 kt] YAGI 04W.2013 [TS 035 kt] LEEPI 05W.2013 [TS 035 kt] BEBINCA 06W.2013 [HUI 065 kt] RUMBIA	3/ 3.6 3/ 3.1 2/ 1.7 3/ 1.8	3/ 1.8 1/ 0.9 3/ 1.7	3/ 2.5 3/ 2.4 3/ 3.1 3/ 1.8	3/ 2.6 3/ 2.5 3/ 2.0 3/ 1.3	1/ 0.3 3/ 1.6 3/ 1.4 3/ 1.8	3/ 2.6 3/ 2.5 3/ 3.1 2/ 1.1	2/ 1.0 3/ 2.4 2/ 1.3 3/ 0.9	86 100 100 100	2013 [TS 055 kt] YAGI 2013 [TS 035 kt] LEEPI 2013 [TS 035 kt] BEBINCA 2013 [HUI 065 kt] RUMBIA	3/ 3.9 1/ 1.4 1/ 0.5 2/ 1.1	1/ 0.2 1/ 0.5 3/ 1.3	3/ 3.0	3/ 3.5 1/ 0.5 3/ 2.7	3/ 2.1 3/ 2.1 3/ 2.6 3/ 1.4	2/ 1.4 3/ 1.9 1/ 0.5 2/ 1.0	0/ 1/ 1.1 3/ 1.7	71 86 86 100	0/	0 forecasts of genesis
07W.2013 [HU4 125 kt] SOULIK 08W.2013 [TS 040 kt] CIMARON 09W.2013 [TS 060 kt] JEBI	3/ 3.7 3/ 3.0 3/ 1.6	3/ 1.4 3/ 2.8 3/ 1.5	1/ 0.4 3/ 3.8 2/ 2.1	1/ 0.4 3/ 3.9 3/ 2.6	0/ 3/ 3.1 3/ 2.3	1/ 0.5 3/ 2.1 3/ 2.0	2/ 1.2 3/ 2.8 3/ 1.5	86 100 100	2013 [HU4 125 kt] SOULIK 2013 [TS 040 kt] CIMARON 2013 [TS 060 kt] JEBI	3/ 3.3 3/ 5.8 3/ 4.0	0/ 3/ 6.1 1/ 0.3	0/ 3/ 7.8	0/	3/ 2.2 3/ 5.9	0/ 1/ 0.5 2/ 1.4	1/ 0.3 3/ 4.2 2/ 0.7	43 100 86	1/ 0.5	I of 3 forecast verified
10W.2013 [TS 040 kt] MANGKHUT 11W.2013 [HU4 130 kt] UTOR 12W.2013 [HU1 075 kt] TRAMI	3/ 2.9 1/ 0.2 3/ 2.5	3/ 2.6 2/ 0.6 3/ 1.5	3/ 2.9 1/ 0.3 3/ 2.2	3/ 2.6 2/ 0.7 3/ 1.9	3/ 2.9 1/ 0.4 3/ 1.8	2/ 1.4	3/ 2.0 2/ 0.7 3/ 0.8	100 100 100	2013 [TS 040 kt] MANGKHUT 2013 [HU4 130 kt] UTOR 2013 [HU1 075 kt] TRAMI	2/ 3.1 3/ 1.6 3/ 4.0	2/ 2.0 3/ 1.1 1/ 0.5	3/3.4 1/0.9 3/3.6	3/ 3.2 0/	2/ 1.5 3/ 1.9 2/ 0.9	2/ 2.5 -1/ 1/ 0.7	3/ 2.7 3/ 1.2 1/ 0.4	100 83 100	2/ 1.5	2/3 forecasts verified
13W.2013 [TD 025 kt] THIRTEEN 14W.2013 [TS 055 kt] KONG-REY 15W.2013 [TS 050 kt] TORAJI	3/ 2.5 3/ 3.5 3/ 2.3	3/ 1.5 2/ 1.6 3/ 2.6	3/ 3.0	3/ 1.9 3/ 3.5 3/ 3.7	3/ 1.8 3/ 2.0 3/ 1.5	2/ 1.6 2/ 2.5 3/ 1.9	3/ 0.8 2/ 1.8 3/ 2.5	100 100 100	2013 [TD 025 kt] THIRTEEN 2013 [TS 055 kt] KONG-REY 2013 [TS 050 kt] TORAJI	3/ 4.0 3/ 2.8 3/ 4.5	1/ 0.5 2/ 0.4 3/ 3.2	3/ 3.6 0/ 2/ 1.4	0/ 3/ 2.5	2/ 0.9 3/ 1.0 3/ 2.4	1/ 0.7 0/ 3/ 2.2	1/ 0.4 2/ 1.5 3/ 1.9	100 57 100	3/ 3.6	3/3 forecasts verified
16W.2013 [TS 060 kt] MAN-YI 17W.2013 [HU5 140 kt] USAGI	3/ 4.2 3/ 3.7	3/ 2.2 3/ 1.8	3/ 3.0	3/ 3.5 3/ 2.7	3/ 2.3 3/ 1.5	2/ 2.8 3/ 3.0	3/ 1.6 2/ 0.8	100	2013 [TS 060 kt] MAN-YI 2013 [HU5 140 kt] USAGI	3/ 2.8 2/ 1.2	1/ 0.2 0/	2/ 3.6	3/ 1.4 2/ 3.5	3/ 1.9 3/ 2.5	2/ 1.3 0/	1/ 0.3 2/ 2.0	100 71		0%
18W.2013 [TD 025 kt] EIGHTEEN 19W.2013 [HU2 090 kt] PABUK	3/ 3.1 2/ 3.2	3/ 2.3	3/ 2.6	3/ 2.0 2/ 3.0	3/ 2.2	3/ 2.7	3/ 2.4	100	2013 [TD 025 kt] EIGHTEEN 2013 [HU2 090 kt] PABUK	3/ 3.0	3/ 1.9	2/ 2.4	3/ 1.5	2/ 1.0	3/ 2.9 1/ 1.2	3/ 1.8	100	14	< 25 %
20W.2013 [HU2 090 kt] WUTIP 21W.2013 [TS 035 kt] SEPAT 22W.2013 [HU2 090 kt] FITOW	3/ 2.7 3/ 3.4 3/ 3.4	3/ 2.3 3/ 2.7 3/ 2.7	3/ 2.5 3/ 3.3 3/ 3.3	3/ 2.3 3/ 2.9 3/ 2.9	3/ 2.2 3/ 2.7 3/ 2.7	2/ 2.0 2/ 2.3 2/ 2.3	3/ 2.2 3/ 2.7 3/ 2.7	100 100 100	2013 [HU2 090 kt] WUTIP 2013 [TS 035 kt] SEPAT 2013 [HU2 090 kt] FITOW	3/ 4.0 3/ 4.3 3/ 4.3	3/ 3.8 3/ 1.6 3/ 1.6		3/ 3.1 3/ 2.1 3/ 2.1	3/ 4.7 3/ 2.5 3/ 2.5	2/ 2.6	3/ 3.1 2/ 1.3 2/ 1.3	86 100 100	29	25 >= % < 75
23W.2013 [HU4 125 kt] DANAS 24W.2013 [HU3 105 kt] NARI	2/ 1.6 0/	2/ 1.3 1/ 1.4	3/ 2.3 1/ 1.3	3/ 2.0 1/ 1.3	3/ 1.6 1/ 0.9	1/ 0.8	3/ 1.4 1/ 1.1	100 71	2013 (HU4 125 kt) DANAS 2013 (HU3 105 kt) NARI	2/ 2.8 3/ 4.3	2/ 1.7 2/ 2.4	2/ 1.2 3/ 5.3	3/ 2.8 3/ 4.2	3/ 1.4 1/ 1.5	1/ 0.6 1/ 0.4	2/ 0.9 3/ 4.1	100 100	83	>= 75
25W.2013 [HU4 115 kt] WIPHA 26W.2013 [HU5 140 kt] FRANCISCO 27W.2013 [TD 025 kt] TWENTYSEVE	2/ 1.1 2/ 1.5 2/ 1.8	3/ 2.1 2/ 1.4 1/ 0.7	3/ 3.2 1/ 0.3 2/ 2.0	3/ 3.0 1/ 0.6 3/ 2.6	3/ 2.3 3/ 0.8 1/ 0.7	2/ 2.0 0/ 1/ 0.9	3/ 2.4 1/ 0.6	100 86 86	2013 [HU4 115 kt] WIPHA 2013 [HU5 140 kt] FRANCISCO 2013 [TD 025 kt] TWENTYSEVE	3/ 4.4 0/ 2/ 2.6	0/	0/ 0/ 1/ 1.0	2/ 2.3 0/ 1/ 1.0	2/ 1.8 1/ 0.5	2/ 3.2 0/ 2/ 1.6	3/ 1.8 0/	86 14 57		
28W.2013 [HU5 140 kt] LEKIMA 29W.2013 [HU3 100 kt] KROSA	3/ 1.8 3/ 2.8	3/ 2.3 3/ 2.4	3/ 2.6 3/ 3.2	3/ 2.0 3/ 2.5	2/ 1.6 3/ 2.2	2/ 1.8 0/	3/ 2.2	100 86	2013 (HU5 140 kt) LEKIMA 2013 (HU3 100 kt) KROSA	2/ 1.8 1/ 1.8	3/ 2.0 1/ 2.2	3/ 2.5 3/ 7.2	3/ 1.9 3/ 7.2	3/ 2.4 3/ 7.0	2/ 1.9 0/	1/ 0.3	100 86		
30W.2013 [TS 035 kt] THIRTY 31W.2013 [HU5 170 kt] HAIYAN 32W.2013 [TD 025 kt] PODUL	3/ 2.4 2/ 1.6 3/ 3.5	3/ 2.1 3/ 1.6 2/ 1.8		3/ 2.4 3/ 2.0 2/ 2.7	1/ 0.7 1/ 0.7 2/ 2.3	1/ 0.8	3/ 2.1 3/ 2.1 2/ 1.9	100 100 100	2013 [TS 035 kt] THIRTY 2013 [HU5 170 kt] HAIYAN 2013 [TD 025 kt] PODUL	1/ 1.3 1/ 1.3 3/ 3.6		2/ 1.4 2/ 1.4 2/ 2.7	3/ 1.7	2/ 0.5 2/ 0.5 2/ 2.3		3/ 1.9 3/ 1.9 2/ 1.9	100 100 100		
33W.2013 [TD 030 kt] THIRTYTHRE bottomline by model	1/ 0.4 97	94	97	1/ 0.4 100	1/ 0.8 97	1/ 0.4 90	94	57	2013 [TD 030 kt] THIRTYTHRE bottomline by model	3/ 3.0 97	0/ 81	2/ 1.8 84	84	3/ 3.5 94	1/ 0.9 80	2/ 1.5 87	71		

- TCgen2 was developed based on NHC operations (O2R) for HFIP
- **FCST mode** consistent with NHC operations, e.g., use 36-60 h model solution for D+2 forecast
- **VERI mode** to see how the models are doing in real time, based on a detailed comparison of model v observed (NHC/JTWC-analyzed) (p)TCs
- in WPAC/EPAC 2013 models had 100% correct genesis forecasts at D+2 reduces to ~80% at D+5
- LANT 2013 genesis forecasts much less skillful, perhaps because the season had the lowest hurricane ACE in the last 48 years...
- a comprehensive and vetted dataset of pTCs 1999-2014
- verification of pTC forecasts, analyzed model TCs, 7-d forecasts...

- TCgen2 was developed based on NHC operations (O2R)
- **FCST mode** consistent with NHC operations, e.g., use 36-60 h model solution for D+2 forecast
- **VERI mode** to see how the models are doing in real time, based on a detailed comparison of model v observed (NHC/JTWC-analyzed) (p)TCs
- in WPAC/EPAC 2013 models had 100% correct genesis forecasts at D+2 reduces to ~80% at D+5
- LANT 2013 genesis forecasts much less skillful, perhaps because the season had the lowest hurricane ACE in the last 48 years...
- a comprehensive and vetted dataset of pTCs 1999-2014
- verification of pTC forecasts, analyzed model TCs, 7-d forecasts...

- TCgen2 was developed based on NHC operations (O2R)
- **FCST mode** consistent with NHC operations, e.g., use 36-60 h model solution for D+2 forecast
- **VERI mode** to see how the models are doing in real time, based on a detailed comparison of model v observed (NHC/JTWC-analyzed) (p)TCs
- in WPAC/EPAC 2013 models had 100% correct genesis forecasts at D+2 reduces to ~80% at D+5
- LANT 2013 genesis forecasts much less skillful, perhaps because the season had the lowest hurricane ACE in the last 48 years...
- a comprehensive and vetted dataset of pTCs 1999-2014
- verification of pTC forecasts, analyzed model TCs, 7-d forecasts...

- TCgen2 was developed based on NHC operations (O2R)
- **FCST mode** consistent with NHC operations, e.g., use 36-60 h model solution for D+2 forecast
- **VERI mode** to see how the models are doing in real time, based on a detailed comparison of model v observed (NHC/JTWC-analyzed) (p)TCs
- in WPAC/EPAC 2013 models had 100% correct genesis forecasts at D+2 reduces to ~80% at D+5
- LANT 2013 genesis forecasts much less skillful, perhaps because the season had the lowest hurricane ACE in the last 48 years...
- a comprehensive and vetted dataset of pTCs 1999-2014
- verification of pTC forecasts, analyzed model TCs, 7-d forecasts...

- TCgen2 was developed based on NHC operations (O2R)
- **FCST mode** consistent with NHC operations, e.g., use 36-60 h model solution for D+2 forecast
- **VERI mode** to see how the models are doing in real time, based on a detailed comparison of model v observed (NHC/JTWC-analyzed) (p)TCs
- in WPAC/EPAC 2013 models had 100% correct genesis forecasts at D+2 reduces to ~80% at D+5
- LANT 2013 genesis forecasts much less skillful, perhaps because the season had the lowest hurricane ACE in the last 48 years...
- a comprehensive and vetted dataset of pTCs 1999-2014
- verification of pTC forecasts, analyzed model TCs, 7-d forecasts...

- TCgen2 was developed based on NHC operations (O2R)
- **FCST mode** consistent with NHC operations, e.g., use 36-60 h model solution for D+2 forecast
- **VERI mode** to see how the models are doing in real time, based on a detailed comparison of model v observed (NHC/JTWC-analyzed) (p)TCs
- in WPAC/EPAC 2013 models had 100% correct genesis forecasts at D+2 reduces to ~80% at D+5
- LANT 2013 genesis forecasts much less skillful, perhaps because the season had the lowest hurricane ACE in the last 48 years...
- a comprehensive and vetted dataset of pTCs 1999-2014
- verification of pTC forecasts, analyzed model TCs, 7-d forecasts...

- TCgen2 was developed based on NHC operations (O2R)
- **FCST mode** consistent with NHC operations, e.g., use 36-60 h model solution for D+2 forecast
- **VERI mode** to see how the models are doing in real time, based on a detailed comparison of model v observed (NHC/JTWC-analyzed) (p)TCs
- in WPAC/EPAC 2013 models had 100% correct genesis forecasts at D+2 reduces to ~80% at D+5
- LANT 2013 genesis forecasts much less skillful, perhaps because the season had the lowest hurricane ACE in the last 48 years...
- a comprehensive and vetted dataset of pTCs 1999-2014
- next steps: spuricanes, verification of pTC forecasts, analyzed model TCs, 7-d forecasts...

Thank You Mahalo どうもありがとう ございます

Thank You Mahalo どうもありがとう ございます "dough-moe a-**rig**-e-toe" as Uncle Bill would say

