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Motivation for our project - JPL

The critical pathways to hurricane forecast improvement

* Is the representation of the * Is the environment captured . .
precipitation structure correct? correctly? To improve Hurricane

Intensity forecasts, we
need to understand how
well the models reflect the
physical processes and
their interactions.

GRIP Portals

<<<<

Satellite observations can
help in 3 important ways!

(Animaie ) Sion

1. Understanding the physical processes

2. Validation and improvement of hurricane
models through the use of satellite data

Latitude

3. Development and implementation of advanced
techniques for assimilation of satellite

observations inside the hurricane core.
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* Despite the significant amount of satellite data today,
they are still underutilized in hurricane research and
operations, due to complexity and volume.
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%9?“ The JPL Tropical Cyclone Information System JPL

(TCIS)
http://tropicalcyclone.jpl.nasa.gov

Objective of the TCIS

To provide a one-stop place that facilitates fusion of multi-parameter,
multi-instrument observations (satellite, airborne and in-situ) and
model output, relevant to both the large-scale and the storm-scale
hurricane processes. These observations pertain to:

 the thermodynamic and microphysical structure of the storms;
 the air-sea interaction processes;

 the larger-scale environment

Goal:

- help understand the physical processes that determine hurricane
genesis, intensity, track and impact on large-scale environment

- help improve hurricane forecast accuracy by facilitating validation and
improvement of hurricane models through comparison with observations
and development of new data assimilation techniques

- enable studies aimed at developing new algorithms, sensor systems
and missions.




Tropical Cyclone Data Archive

Satellite depiction of hurricanes over the globe
12-year record (1999-2010)
offers both data and imagery, making it a
unique source to support:

- hurricane research

- forecast improvement

- algorithm development

- instrument design

HS3 — Interactive NRT Atlantic portal

Integrates model forecasts with satellite and
airborne observations from a variety of
instruments and platforms, allowing for easy
model/observations comparisons.

Allows interrogation of a large number of
atmospheric and ocean variables to better
understand the large-scale and storm-scale
processes associated with hurricane genesis,

track and intensity changes.

Very rich information source during the
analysis stages of the field campaigns.

The JPL TCIS - Tropical Cyclone Information System JPL
http://tropicalcyclone.jpl.nasa.gov
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The JPL Tropical Cyclone Information
L | System (TCIS) was developed to support
. hurricane research. It has two components: a
‘ 12-year global archive of multi-satellite
8| hurricane observations and, what was a near
y real-time portal, that supported the 2010
¥ " NASA Genesis and Rapid Intensification

) Processes (GRIP) hurricane field campaign.
Supertyphoon Pongsona st the U.S. Island of Guam on Sunday, December 8, 2002. The composite image Together. data and visualizations from the
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and improve models, and assist in developing
new algorithms and data assimilation
techniques. Below you will find links to
various portals where you can view different
tvpes of data.
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Tropical Cyclone Data Archive >

The TCIS Data Archive is a comprehensive tropical cyclone database of multi-parameter satellite observations pertaining to the
thermodynamic and microphysical structure of the storms, the air-sea interaction processes and the larger-scale environment.
Currently, it contains satellite depictions of hurricanes over the globe from 1998-2010. Users are able to browse through hurricane
seasons and ocean basins to find specific storms of interest. The portal is designed to facilitate the finding of coincident observations
from multiple instruments, and it provides fast access to pre-subsetted data and plots, making this a unique tool for hurricane research.
Additionally, data files can be directly accessed through our FTP site.

—

This near real-time interactive portal was developed to support the multi-year Hurricane and Severe Storm Sentinel (HS3) aircraft
campaign. HS3 is a five year mission with a three year airborne component (2012-2014). The campaign's main goal is to investigate
the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. This portal allows users to analyze
and compare observation data and model forecasts in the North Allantic basin from July to November of each year of the campaign.

HS3 Data Portal

Site Manager: Svetia M Hristova-Veleva PRIVACY Webmaster: Quoc Vu (JPL Clearance: CL#08-34¢
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& The 12-year Global Data Archive ™

— A wide variety of data types
— Organized by year, basin, storm - no need to search!
— DATA and imagery

— Large-scale and storm scale

e Large-scale (over the ocean basins; +2 days on either side)
— SST (Sea Surface Temperature)
— Scatterometer winds (ASCAT)
— TPW (Total Precipitable Water) from AMSU
— Thermodynamic atmospheric structure from AIRS

e Storm scale

— 2000 x 2000km regions centered on the “Best Track” that was
interpolated to the time of the satellite observation

— Geostationary IR: GOES, MTSAT, FY2, Meteosat, MSG (HURSAT Version 5)
— Multi-frequency brightness temperatures from TRMM-TMI, AMSR-E, SSMI
— full set of radar observations from TRMM-PR and CloudSAT

— QuikSCAT and OSCAT surface winds — new JPL product (Stiles et al., 2013)

— MLS, OMI



- Satellite depictions | jp| TCIS — The Tropical Cyclone Data Archive -PL
of hurricanes over

the globe http://tropicalcyclone.jpl.nasa.gov
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" The Rain Indicator — a multi-channel depiction of the storm structureJPL

Hristova-Veleva et al., 2013: “Revealing the Winds Under the Rain. Part I. Passive Microwave Rain Retrievals
Using a New, Observations-Based, Parameterization of Sub-Satellite Rain Variability and Intensity: Algorithm
Description”, 2013, JAMC 52, 2828-2848

Microwave signals at the top of the atmosphere can be classified into two categories:

— emission signal - dominant at lower frequencies; warming; better for light rain. Strong
emission in the atmosphere reduces the polarization difference (PD) in the ocean surface
radiation. Hence, PD is representative of the atmospheric emission.

— scattering signal -dominant at higher frequencies; cooling; better for heavy rain; PCT

 Hence, both signals have to be incorporated to cover the entire rainfall spectrum.
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" The Rain Indicator — a multi-channel depiction of the storm structureJPL

Hristova-Veleva et al., 2013: “Revealing the Winds Under the Rain. Part I. Passive Microwave Rain Retrievals
Using a New, Observations-Based, Parameterization of Sub-Satellite Rain Variability and Intensity: Algorithm
Description”, 2013, JAMC 52, 2828-2848

AMSRE AQUA-1 Rain Index(RI) Earl 2010/08/31 06:19:38 Advantages of Using the

Earl, 2010
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Asymmetry and Evolution aciiia

Statistics from observations ; North Atlantic Hurricanes

Parameter as a function of:
- Quadrant with respect to storm motion

Created composites following
similar approaches:

Lonfat, M., F.D. Marks, and S.S.Chen, 2004:

— — . "Precipitation Distribution in Tropical Cyclones using the
Q4; Front Left Q]-; Front ng ht Tropical Rainfall Measuring Mission (TRMM) microwave
imager : A Global Perspective” MWR 132(7)

Rogers et al., 2012 : "Multiscale analysis of mature
tropical cyclone structure from airborne Doppler
composites," MWR, 140 (1)

Wu, L, H. Su, R. G. Fovell, B. Wang, J. T. Shen, B. H.
Kahn, S. M. Hristova-Veleva, B. H. Lambrigtsen, E. J.
QZ; Back Ri ght Fetzer, J. H. Jiang, 2012: “Relationship of Environmental
Relative Humidity with Tropical Cyclone Intensity and
Intensification Rate over North Atlantic”, Geophys. Res.
Lett., 39, L20809, doi:10.1029/2012GL053546.

Q3; Back Left

Direction of Storm|Motion

Many others.




Asymmetry and Evolution aciiia

Statistics from observations ; North Atlantic Hurricanes

Parameter as a function of:
- Quadrant with respect to storm motion
- distance from storm center (y-axis)

- days from maximum intensity (x-axis)
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9-year statistics from AMSR-E observations JPL
North Atlantic Hurricanes; 2002-2011
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9-year statistics from AMSR-E observations JPL

North Atlantic Hurricanes; 2002-2011
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9-year statistics from AMSR-E observations JPL
North Atlantic Hurricanes; 2002-2011
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JPL

Improved QuikSCAT Hurricane Winds

Stiles, B.W., R. E. Danielson, W. Lee Poulsen, M. J. Brennan, S. Hristova-Veleva, T.-P. J. Shen, and A. G. Fore,
“Optimized Tropical Cyclone Winds from QuikSCAT: A Neural Network Approach,” accepted IEEE TGARS, 2013.

~~~~~~~~~~~~ j ' cyclone (TC) wind speed fields
= R : = 100 —10,000 storm scenes over 10
s ; ' “ years
\ 30 —Validated vs. hurricane
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See http://tropicalcyclone.jpl.nasa.gov ASCAT (ESA) scatterometers.
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10-year statistics from QuikSCAT observations JPL
North Atlantic Hurricanes; 2000-2009
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10-year statistics from QuikSCAT observations JPL
North Atlantic Hurricanes; 2000-2009
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10-year statistics from QuikSCAT observations JPL
North Atlantic Hurricanes; 2000-2009
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= JPL

@ Classifying by Intensity change

North Atlantic

H
RW= Rapidly Weakening DeltaSpeed <-4.75 m/s per 6hr (-37.0kt per 24h)
W= Weakening -4.75 m/s per 6hr < DeltaSpeed < -0.75 m/s per 6hr (- 5.8kt per 24h)
I= Intensifying 2.25 m/s per 6hr < DelatSpeed < 4.75 m/s per 6hr (+37.0kt per 24h)

RI= Rapidly Intensifying DeltaSpeed > 4.75 m/s per 6hr (+37.0kt per 24h)
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@’ Asymmetry and Intensity Changes

Statistics from observations ; North Atlantic Hurricanes

Parameter as a function of:
- Quadrant wrt storm motion
- distance from storm center (y-axis)

- days from maximum intensity (x-axis)
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JPL

Summary

- To facilitate hurricane research, we developed the JPL Tropical Cyclone
Information System (TCIS) of multi-parameter multi-instrument
observations (satellite, airborne and in-situ) pertaining to:

- the thermodynamic and microphysical structure of the storms;
- the air-sea interaction processes;
- the larger-scale environment.
- One of the two main components of the JPL TCIS is an archival database of
satellite observations (http://tropicalcyclone.jpl.nasa.gov/hurricane/gemain.jsp)
- It presents the satellite depiction of hurricanes
- over the globe
- during the period 1999-2011
- offering both data and imagery
- It provides a one-stop place to obtain an extensive set of multi-
parameter data from multiple observing systems, making the TCIS-
archival Database a unique source to support hurricane research,
forecast improvement and algorithm development.
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Summary (cont.)

- We analyzed the rain and wind fields of the Atlantic hurricanes
during the last decade

- Looked at two new products

- The Rain Indicator — a multi-channel passive microwave measure

- New hurricane—specific surface wind product (from QuikSCAT)
that provides reliable wind estimates under rain and in high-
wind conditions typical for hurricanes

- Investigated

- the storm asymmetry and its evolution as a function of storm
intensity (Cat1-3 versus Cat4-5)

- the storm asymmetry and its relationship to the storm intensity

changes
Rapidly Weakening, Weakening, Neutral, Intensifying, Rapidly Intensifying
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Summary (cont.)

- We find that:
- Category 1-3 hurricanes show different evolution of the storm asymmetry
than Cat 4-5.

- Rain and Wind fields show different evolution of the asymmetry
- Rain: Cat 1-3 fields are larger and less symmetric in both space and time (more
intense precipitation is in the front 2 quadrants; Radial expansion of precipitation
after the storm peak (front 2 quadrants). Increase in asymmetry
- Wind: Cat 4-5 fields are larger and less symmetric in both space and time
(stronger winds in the right 2 quadrants; Radial expansion of high winds after the

peak of the storm. More pronounced in the right 2 quadrants; Increase in
asymmetry)

- Of course, in both cases (rain and wind) Cat4-5 have more intense fields.
- Rapidly Intensifying (RI) and Rapidly Weakening (RW) storms show structures
that make them distinguishable from the other storms.

- Rl storms have most symmetric wind and rain fields

- RW storms have most asymmetric wind and rain
- Stronger rain in the 2 forward quadrants
- Stronger wind in the 2 right quadrants

- Looking at the statistics of multiple variables (rain and wind) provides a more
complete view of the storm structure and evolution.
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The NRT Interactive PORTALS

Two near-real-time (NRT) web portal

Developed to facilitate the hurricane field campaigns:
— GRIP in 2010 - http://grip.jpl.nasa.gov
— HS3in 2012-2014 — http://hs3.jpl.nasa.gov

Integrates model forecasts with satellite observations from a variety of
instruments and platforms.

The unique features of the portal allow users to interrogate a large
number of atmospheric and ocean variables to better understand the
large-scale and storm-scale processes associated with hurricane genesis,
track and intensity changes.

By including a diverse set of satellite observations and model forecasts,
it provides a good spatial and temporal context for the high-resolution,
but limited in space and time, airborne observations.

Such knowledge is essential for the experiment design, providing critical
input for the flight planning and serving as a very rich source of
information in the analysis stage of the airborne experiment




- To evaluate and improve models
- To better understand the large-scale and storm-
scale processes and their interaction

Wavenumber analysis tool

- First adopted and used by NOAA/AOML/HRD
- Developed for us by Z. Haddad and N. Niamsuwan

. QS%\ Analysis tools to allow interrogation of a large
h number of atmospheric and ocean variables
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N@ "4 Storm structure Tool: Storm Size and Asymmetry
% The Wave Number Analysis Tool using the Rain Index (multi-channel PMW index)

More details in the Rain Index can be found in Hristova-Veleva et al. 2013, JAMC 52, 2828-2848
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N@ "4 Storm structure Tool: Storm Size and Asymmetry
% The Wave Number Analysis Tool using the Rain Index (multi-channel PMW index)

More details in the Rain Index can be found in Hristova-Veleva et al., JAMC, 2013
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www Current state-of-the-art hurricane prediction

® 25% reduction in 48 hour track error‘l_‘ But WHY ???

over the past 6 years

AVERAGE ERRORS

FOR HURRICANE TRACK PREDICTIONS * What are the sources of the intenSity errors?

y | ognou] * Do the models properly reflect the physical

L | 48-hour|

processes and their interactions?

* |s the representation of the precipitation
structure correct?

ERROR IN NAUTICAL MILES

e |s the storm scale and asymmetry
reflected properly

® Intensity forecasts have not improved. « Is the environment captured correctly

AVERAGE ERRORS IN INTENSITY H 4
DR R S S Y s * |Is the interaction between the storm and

% its environment represented accurately

* Recognizing an urgent need for more accurate
hurricane forecasts, NOAA recently
established the multi-agency 10-year
Hurricane Forecast Improvement Project
(HFIP).

ERROR IN KNOTS

year
Graphs: Hurricane Research Division




