Comparison Of “Cloudbursts “ In The Nepal And Indian Himalayas: From Tropical-extratropical Interaction Perspectives

Archana Shrestha, Gregory Tripoli and Larissa Back
University of Wisconsin, Madison

31st AMS Hurricane and Tropical Meteorology March 31-4 April 2014, San Diego, CA
Outline

• Background on Cloudburst
• Case Studies Introduction
• Motivation
• Results: Case studies comparison
 – Synoptic features
 – Pre-condition
 – Energy conversion
• Summary
Cloudbursts

• Localized intense rainfall episodes during the monsoon season in the Himalayas leading to devastating flashflood and debris flow
Cloudburst Characteristics: Central Nepal
(Results of Composite Analysis)

• Rainfall: more than 220mm/day
• Enhanced rising motion due to the combination of two synoptic factors
 – secondary circulation around the easterly and westerly jet entrances
 – superposition of PV anomaly with elevated topography
• Pre-condition
 – Upper tropospheric theta anomaly over monsoon trough
 – Active monsoon spells in India prior to the event.
Energy converted from Available Potential Energy (APE) Anomaly is represented by Positive Work Term

\[
\frac{\partial KE}{\partial t} = -V \cdot \nabla_\theta M = Work\ Term
\]
Two Case Studies: Introduction

Uttarakhanda India (2013 cloudburst)
- June 15-16, 2013
- Rainfall: 325mm/day
 - 25% of mean monsoon rainfall
- Followed by several rainfall episodes
- Huge debris flow
- Glacier Lake Outburst
 (Dohbal et al 2013)

Kulekhani, Nepal (1993 cloudburst)
- July 19-20, 1993
- Rainfall: 500mm/day
 - 36% of mean monsoon rainfall
- Followed by a rainfall episode
- Huge debris flow
Motivation

- Nepal event occurred: mid-monsoon (July)
- Indian event occurred: monsoon onset (June)

1. First Question...
 - Does monsoon onset cloudburst have similar synoptic characteristics as the mid-monsoon case?

2. Secondly:
 - Composite Analysis Hypothesis: latent heat release prior to the cloudburst stimulates the favorable synoptic condition for the cloudburst.
 - What stimulates the cloudburst during the onset period?
Results:
Comparison of Synoptic Features two Case Studies
• In both cases, both the Jets are stronger than climatology

• In both cases, easterly and westerly Jet entrances shifts and relocate relative to the cloudburst regions.

• But in Indian case easterly jet entrance remained over the normal latitude
Tropopause Fold over Elevated Topography

Latitudinal Cross Section across cloudburst Shading: vertical velocity in Pa/s
Contours: Climate PV = 1.5 PVU; Magenta: cloudburst PV > 1 PVU

- Strong tropopause fold (TF) and Upper level PV anomaly over Elevated Topography in both cases
- Single rising branch in Nepal Case
- Double rising branches in Indian Case
Monsoon Trough During Cloudburst

Nepal Himalayas

Red Contours: MSLP (hPa);
Surface wind vectors (m/s)
Green line Monsoon trough

Indian Himalayas

Red Contours: MSLP (hPa);
Surface wind vectors (m/s)
Green line Monsoon trough

Monsoon Trough shifts to the Himalayas

Monsoon Trough in normal position

MSLP (shading) and wind (vectors) Anomaly

High Pressure anomaly over India

Low Pressure Anomaly over India
Results:
Precursor Theta Anomaly
5 pre-day Theta Anomaly
Cross-section along the cloudburst region

Latitudinal Cross Section across cloudburst. Shading: Theta Anomaly (oK) Contours: Theta (K). Thick Black contour: Climate PV =1.5 PVU; **Magenta:** cloudburst PV > 1 PVU

Tropical theta anomaly in the upper level centered over 20N

Tropical theta anomaly in the mid troposphere centered over 35N
Pre-cloudburst Theta anomaly: Nepal Case

• Preceded by two active monsoon spells in India (Rajeevan et al 2010) and weak easterly jet
 – Active monsoon in India is associated with condensational heating
 – Weak easterly jet might have led to less southward transport of energy
 – Resulting in positive theta anomaly
The event was preceded by long period rainfall deficit and heat wave condition in the northwest India.

- Positive theta anomaly in the Indian Case

Pre-cloudburst Theta Anomaly: India Case

Rainfall Anomaly (MAM)
Max Temp Anomaly (MAM)
IMD, 2013
Positive work: energy conversion at upper levels associated with two direct circulations: 1) easterly jet entrance and 2) westerly jet entrance

Energy conversion from APE anomaly to jet strength during the event

Shading work term at 13km (oK/day). Warm colors: positive; cold color: negative
Shading work term at 13km (oK/day). Warm colors: positive; cold color: negative

- Energy conversion from APE anomaly to jet strength during the event
- Northward work term is stronger than in Nepal Case
Summary

• Similarities:
 – superposition of Upper level PV-Anomaly with the elevated terrain
 – superposition of the up-branch of easterly and westerly direct circulations produces enhanced lifting
 – the direct circulations are enhanced by conversion of from locally generated APE anomalies

• Differences:
 – Influence of easterly Jet is stronger in Nepal Case than in Indian case
 – APE anomaly in Nepal case is associated with monsoon activity
 – APE anomaly in Indian case is associated with the strong pre-monsoon elevated landmass heating
Thank You!