
10C.4                           Geostationary Satellite Technique to Estimate Tropical Cyclone Size 

Klaus Dolling1, Elizabeth Ritchie and Scott Tyo 
University of Arizona 

 

1. Introduction1 

The large differences in size and strength of 
tropical cyclones (TCs) result in considerable 
variability in their impacts on both marine 
interests at sea and inhabited coastal areas 
during close approach and landfall.  Larger 
storms may have increased storm surge, 
increased oceanic upwelling, and a wider area 
in which flooding and damaging winds may 
occur as well as a larger area of rainfall.  Thus a 
robust and accurate depiction of the extent of 
damaging winds is important both to directly 
prepare for impacts and also to properly 
initialize numerical weather prediction (NWP) 
forecasts of future TC motion, intensity, and 
wind structure.  The size of a TC also has 
important implications for TC bogusing 
techniques.  The insertion of a synthetic bogus 
vortex into a model is used extensively (Leslie 
and Holland 1995; Pu and Braun 2001; Kwon et 
al. 2002; Kwon and Cheong 2010), and 
knowledge of TC size in the data-sparse oceans 
would be useful in customizing the bogused 
vortex for individual models.  

Operational centers, including the National 
Hurricane Center (NHC), the Joint Typhoon 
Warning Center (JTWC), and the Japan 

Meteorological Agency (JMA), among 

others, routinely provide forecasts of the 

wind field structure of active TCs within 
their area of responsibility.  Forecasts of the 
wind radii, representing the maximum radial 
extent of the 34-, 50-, and 64-kt (1 kt = 0.52 m s-

1) winds (hereafter referred to as R34, R50, and 
R64 respectively) in 4 quadrants circling the TC 
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(northeast, southeast, southwest, and 
northwest quadrants) are routinely 
constructed.   

The current study extends research based on 
the deviation angle variance (DAV) technique 
(Piñeros et al. 2008), which utilizes digital 
brightness temperatures from long-wave 
infrared (IR) satellite images to objectively 
measure the symmetry of a TC solely based on a 
comparison of the gradient vectors of 
brightness temperatures from an actual TC with 
the gradient vectors of an ideal, symmetric 
vortex.  The DAV technique has already been 
utilized to obtain TC intensity and as a means of 
identifying cyclogenesis in the Atlantic, eastern 
North Pacific, and western North Pacific basins 
(Ritchie et al. 2012; Ritchie et al. 2013; Wood, 
2012)  In this study, the spatial-temporal 
structure of the DAV signal for TCs is utilized 
(Piñeros et al. 2010) along with wind radii from 
the Extended Best Track and information from 
the Statistical Hurricane Intensity Prediction 
Scheme (SHIPS) model (DeMaria and Kaplan 
1994; 1999; DeMaria et al. 2005) to provide a 
multiple linear regression technique that 
objectively calculates the wind radii for a given 

Figure 1.  Map of deviation-angle variances: (a) IR 
image. The area analyzed around a reference point is 
indicated by the black circle (350 km); (b) gradient 
field of the brightness temperatures within the circle 
in (a); (c) Deviation-angle calculation for (black 
arrow) a gradient vector relative to a radial line 
extending from the reference point; (d) Deviation-
angle histogram; and (e) Map of deviation-angle 
variances [deg

2
]. (adapted from Piñeros et al. 2010).  
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TC on a half hourly basis.  The results from the 
technique presented here are tested against 
TCs with aircraft reconnaissance occurring 
within 3 hr of a Best Track estimate.  A model is 
produced that predicts the symmetric and 
asymmetric components of the wind radii on a 
half-hourly basis.  The model will provide 
objective wind field estimates in real-time that 
may be used by forecasters and NWP model 
initialization. 

2. Data and Methodology 

The data used for this study are digital 
brightness temperatures from long-wave (10.7 
μm) IR satellite images.  Approximately 4,708 
half-hourly images from the Geostationary 
Operational Environment Satellite 12 (GOES 12) 
imager are processed from 21 TCs for the years 
2004-2010 in the North Atlantic basin.  Tropical 
cyclones are chosen based on the occurrence of 
aircraft reconnaissance within 3 hr of a best 
track time.  For the purposes of the regression, 
each case required at least 48 hr of semi-
continuous reconnaissance, so they are 
confined to the Atlantic basin west of 55˚ W 
where aircraft reconnaissance is routinely 
performed.  Following the methodology of 
Piñeros et al. (2010), the deviation angles at 
each pixel within a 500-km radius of the central 
reference point were computed.  The sensitivity 
to different radii for the DAV calculation was 
tested; the 500-km radius was determined to 
provide the best relationship with the wind 
radii. The variance of the histogram of deviation 
angles was calculated and mapped back to the 
reference pixel in order to create the map of 
variances for that satellite image (Fig. 1).  For 
more information on the DAV and its use in TCs, 
see Piñeros et al. (2008, 2010, 2011).    

In the present study, a map of DAV is calculated 
for each half-hourly satellite image for the 
entire time in which the TC had reconnaissance 
data.  A multiple linear regression technique is 
developed to model both the symmetric and 
axisymmetric parts of the wind radii. Variables 
from the best track data, and environmental 
parameters from the SHIPS model are utilized in 

Figure 2.  Hovmoller diagram of the azimuthally-
averaged DAV signal plotted in color shading with 
values corresponding to the color bar on the right for 
tropical cyclone Gustav.  The red dashed line is the 
symmetric observed wind radii (km) and the thick 
black dashed line displays the regression line (km). 
The thin black dashed line displays the intensity of 
the TC in kts.  (a) 34 kt winds.  (b) 50 kt winds.  (c)  64 
kt winds.  The thin black dashed line is the TCs 
intensity in kts. 



the regression model.  The preliminary step 
plots each TC with the azimuthally averaged 
DAV signal for each radius along with the 
symmetric component of the Extended Best 
Track wind radii using the Best Track centers.  
After all the data are processed, the DAV signals 
with the lowest root mean squared error 
(RMSE) corresponding to each of the three wind 
radii are used in the regression model.  The next 
step consists of a screening regression known as 
forward selection (Wilks 2006).  Each of the 
predictors is numerically tested for the strength 
of their linear relationship to the predictand.  
After the predictor with the best linear 
relationship to the predictand is selected, the 
process is repeated with the remaining 
variables.  This continues until the predictors 
display diminished improvements within the 
regression equation.  Once the predictors 
improve the regression equation by less than 
1%, they are ignored.  TC age, SSTs, and 
maximum wind speed are the best predictors 
for both the symmetric and asymmetric models 
(Table 1).  

 
Table 1.  Results from the multiple linear regressions.  
First column is the wind radii (kts).  Second and 3

rd
 

column are the mean absolute error (n mi) and R
2 

values. Forth and 5
th

 columns display the P-value and 
the predictors used for each radii. 

The large sample size (4,708 half hourly satellite 
images) is ideal for the statistical testing of the 
data.  A cross-validation method is used to 
investigate the forecast precision of the wind 
radii.  Using this method, 80% of the data are 
used to create the multiple linear regression 
parameters, and the linear regression model is 
then tested on the remaining 20% of the data.  
This method is applied 5 times by leaving out 
successive 20% increments of data and using 

the other 80% to create the multiple linear 
regression models.  The method is used for both 
the symmetric and the asymmetric calculations 
of the different wind radii. 

3. Results 

Table 1 displays the wind radii, the MAE, R2 
values, P values and the best linear predictors.  
For the symmetric regression, adding more than 
2 predictors yielded negligible returns, thus only 
the top two predictors besides the DAV were 
used.   In addition to the DAV signal, TCage was 
the largest contributor to the relationship for all 
cases.  The multiple linear regression model 
produces estimates for the wind radii with 
MAEs of 20.8, 12.5, and 7.3 n mi for R34, R50, 
and R64 respectively.  P-values in all cases have 
confidence levels above the 99.9% confidence 
level indicating a strong relationship between 
the predictors and the predictand.   

Figure 2 displays the symmetric components of 
the R34, R50, and R64 respectively for 
Hurricane Gustav.  Hurricane Gustav is a good 
example of a TC that varies in both intensity and 
the size of the wind radii through its sample 
period.  In each of the panels, the DAV signal 
closely mimics the shape of the wind field.  The 
added predictors increase this accuracy. 

 
Figure 3.  Chart displaying the root mean square 

error (RMSE) and the mean absolute error (MAE) for 

the R34, R50, and R64 kt wind radii.  Also included 

are the 3 radii with the stipulation that their intensity 

must be hurricane intensity or higher and the 

average of the 5 bins tested during the cross-

validation analysis. Values are in nautical miles. 



 
Figure 4. Mean absolute error (MAE, nm) for: (a) 
northeast; (b) southeast; (c) southwest; and (d) 
northwest quadrants of the R34, R50, and R64 kt 
wind radii.  Also included are the average testing 
(AT) of the 5 bins from the cross-validation analysis.   

To test the model over a larger dataset, a cross-
validation method was utilized.  The results are 
displayed in Figure 3 for all wind radii.  Notice 
that the tests result in RMSE and MAE values 
that are similar to the “all data” regression 
model demonstrating that our model is 
consistent and produces similar results when 
forecasting for subsets of the data.  R2 values 
steadily increase from R34 to the R64, and p-
values of each subset tested for all wind radii 
display confidence levels above 99.9%. 

Figure 5. Test case using all tropical cyclones except 
Ike for the regression. All values are as in Fig.2 except 
for individual quadrants. The red dashed line is the 
symmetric 34 kt wind radii (km) and the thick black 
dashed line displays the regression line (km).  The 
thin black dashed line is the TCs intensity in kts:  (a) 
Northeast quadrant; (b) Southeast quadrant; (c) 
Southwest quadrant;  and (d) Northwest quadrant. 

Figure 6.  Same as Figure 5 except for R50.   

Figure. 7.  Same as Figure 5 except for R64.   

The results for the asymmetric analysis are 
listed in Figure 4.  As mentioned above, the 
analysis utilizes the azimuthally averaged DAV 
from each TC quadrant.  For each of the wind 
radii, the NE and NW quadrants have the 
highest MAE, yet when taken as a percentage of 
the average wind radius in each quadrant, they 
usually score lower than other quadrants.  The 
SW quadrant consistently has the lowest MAEs, 
likely an artifact of the general motion of TCs to 
the east and north and the smaller average 
wind radii in that quadrant.  

R2 values for the cross-validation of the 
asymmetric regression all have confidence 
levels above the 99.9% level.  In general the 
average testing of the intervals produces MAEs 



which are a few points higher than the actual 
MAEs (Fig. 4). 

As an added test to investigate the ability of the 
asymmetric regression model to estimate wind 
radii for TCs, the data from TC Ike are withheld 
and the regression parameters are derived from 
the remaining TCs. TC Ike remained above 
hurricane intensity for the entire observation 
period, therefore the regression model of 
hurricane intensity and above subset is used.  
As displayed in Figs. 5, 6, and 7 for R34, R50, 
and R64 respectively, the regression is able to 
model the general shape and distance of each 
wind radius in each quadrant, though the 
observed wind radii (i.e. Fig. 5b) display some 
large swings while the regression model tends 
to have a smoother shape to it.   

A comparison of the wind structure between 
the DAV regression and the aircraft 
reconnaissance is displayed in Fig. 8.  The DAV 
regression model captures the general shape 
and size of the vortex as reported by 
reconnaissance data. 

 

Figure 8.  Modeled DAV regression in color and black 

contours from aircraft data (3 contours are the 34, 

50 and 64 kt wind radii at for Hurricane Ike over a 6 

day period on (a) 09/05/08 at 18 UTC (b) 09/07/08 at 

12 UTC (c) 09/10/08 at 12 UTC and (d) 09/12/08 at 

18 UTC. 

 

4. Conclusions 

Approximately 4,708 half-hourly images from 
GOES 12, brightness temperature images are 
processed from 21 TCs from the years 2004-
2010 that had extensive in-situ observations.  
The current study extends past research based 
on the DAV that utilizes digital brightness 
temperatures from long-wave IR satellite 
images to objectively measure the symmetry of 
a TC solely based on a comparison of the 
gradient vectors of brightness temperatures 
from an actual TC with the gradient vectors of 
an ideal, symmetric vortex.  Maps of the DAV 
with respect to time provide information on the 
symmetry of TCs.  Lower DAV values are 
associated with higher symmetry and higher 
values with less symmetry.  In this study the 
spatiotemporal information in these maps, 
along with information from Best Track and the 
SHIPS model, has been utilized to create a 
multiple linear regression model.  This objective 
model is utilized to estimate the 34-, 50- and 
64-kt wind radii.   

Symmetric and asymmetric models are derived.  
The symmetric model produces MAEs of 20.8, 
12.5, and 7.3 n mi for R34, R50, and R64, 
respectively.  Confidence levels are above 99.9 
% for all cases presented here.  The asymmetric 
component of the wind radii are also modeled 
using azimuthally averaged DAV in the NE, SE, 
SW, and NW quadrants of the TC.  Using the 
same predictors as the symmetric model gave 
the best estimates of the wind radii.  MAEs for 
R34 in the NE, SE, SW, and NW quadrants are 
27.7, 25.2, 19.9, and 30.1 n mi respectively.  The 
MAEs for R50 for the same quadrants are 17.6, 
16.7, 12.3, and 18.1 n mi.  R64 has MAEs in each 
quadrant of 10.3, 8.9, 6.9, and 9.1 n mi.  In the 
future the regression model will hopefully be 
useful in data sparse oceans with no aircraft 
reconnaissance to approximate the size and 
strength of TCs wind fields. Synthetic vortices 
created with this regression model may help 
generate a more realistic structure for the 
bogus vortex in NWP models which may 



increase the accuracy of the track, intensity, 
rainfall, and surge forecasts. 
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