
 

Fig. 1. Cumulative distribution of US normalized 
damage since 1900 plotted on log-log axes 
illustrating a Pareto fit (blue line) to the 33 most 
destructive TCs. Here α = 1.14. For seasonally 
aggregated damage, α = 1.37. 
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If one normalizes for changes in population, 

wealth and value of the currency (Pielke et al. 2008), 
US damage from hurricanes has remained sensibly 
constant since 1900, as has the rate of US landfalls. 
Seasonally aggregated damage is reasonably well 
approximated by combinations of log-normal 
distributions (Katz 2002, Willoughby 2012a).   

Downscaled Global Climate Model simulations 
support the idea that on a warmer globe the lifetime 
maximum intensities of the most intense hurricanes 
(those limited solely by thermodynamics) will 
increase as numbers of TCs remains constant, 
decrease slightly (Knutson et al. 2010, Bender et al. 
2010), or increase slightly (Emanuel 2013). 
Examination of the most intense Atlantic Hurricanes 
since 1974, when geostationary satellite imagery 
first became available, reveals an abrupt increase in 
1995, coincident with a cool-to-warm AMO 
transition. Other basins also show increases in 
extreme TCs (Kossin et al 2013, Elsner et al 2008), 
but given the relatively short record, the signal is less 
well defined. The most intense Atlantic hurricanes 
generally reach maximum intensity in the Caribbean, 
Gulf of Mexico, or over tropical North Atlantic.  A 
significant fraction of these hurricanes reach US 
shores when they are still major hurricanes 
(maximum winds > 50 m s−1), but 2-3 Saffir- Simpson 
categories weaker than their maximum.  

Approximately ⅔ of US damage occurred 
during the most damaging 10% of hurricane seasons. 
The “fat tails” of the cumulative distributions (Fig. 1) 

for both seasonally aggregated and individual-
hurricane damage are well approximated by Pareto 
distributions: Pr{d > D} = P0(D0/D)α, where d and D 
are damage values, D0 and P0 are the baseline 
damage and probability at the lower end of the tail 
such that Pr{d > D0} = P0., and α is the Pareto 
exponent. The Pareto exponents for seasonally 

aggregated and individual hurricane damage are 
1.37 and 1.14, respectively.  

If the full range of damage obeys log-normal 
distributions, the Pareto distributions on the tails 
derive from Taylor expansions of the complementary 
cumulative distributions. The variances of Pareto 
distributions diverge when α < 2, and the means 
diverge when α < 1, but the underlying log-normal 
distributions are well behaved. Thus, extreme values 
obtained by extrapolation of Pareto distributions to 
low very probabilities (e.g., Willoughby 2012b) may 
be artifacts of the approximation.  
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Fig. 3. Pareto distribution (blue squares, α = 1.44) 
generated by summing the elements contained in 
each of 100 Poisson samples (m=10) drawn from a 
Zipf distribution (red circles) with 400 elements. 
Each Zipf element is weighted by w, a uniformly 
distributed random factor , 0 < w < 1; W1 = 1.0 for 
the Zipf distribution. 

Intensities of TCs are thermodynamically 
limited (e.g. Emanuel 1999), and their size is limited 
by the requirement that the Rossby number must be 

significantly larger than unity (Shapiro and 
Willoughby 1983). Thus, they lack the self-similarity 
with increasing intensity that characterizes many 
other geophysical threats 

A possible resolution of the conundrum lies in 
the distributions assets at hazard. It is well known 
among geographers and economists that sizes of 
“populated places” obey Zipf distributions (e.g., Ades 
and Glaeser 1995, Gabiax 1999) in which the sizes of 
the populated place are ranked from largest to 
smallest and Sn, the size of the nth populated place, is 
S1/n, so that they obey a Pareto distribution with 
α = 1. If one assumes, following Pielke et al. (2008), 
that Wn, the wealth at risk in each of these 
populated places scales as Sn, this insight provides a 
possible explanation for the loss distribution’s fat 
tail, inasmuch as it is inherited from the exposure 
distribution.  

Fitting Pareto distributions (Fig. 2) to the 1900-
2010 census populations of the 436 “coastal 
counties” (Pielke et al. 2008) yielded α = 1.145, 
1.264, and 1.852 for 1900, 1950, and 2010, 
respectively.  This result seems at variance with the 
demographic literature until one realizes that in the 
early 20th Century many coastal counties contained a 
single, dominant populated place. As the coastline 

became more settled, many counties developed 
multiple populated places and some populated 
places spanned multiple counties. As a result of the 
central limit theorem, this “Aggregation Effect” 
adjusted the Zipf distribution of county population 
toward a normal distribution, leading to larger 
values of α for the tail.  

One way to test this insight is to generate a Zipf 
distribution, draw multiple samples from it, and 
examine the distribution of the sums of the 
elements in each sample. The sizes of the samples 

can be fixed or drawn from a Poisson distribution, 
and the weighting used in summation can be unity, 
uniformly distributed, or normally distributed. As 
expected, sums of 4 to 8 elements yielded Pareto 
distributions whose exponents were in the 1.1—1.4 
range that characterizes US damage, despite 
considerable random scatter (Fig. 4). In this example, 
α tends to approach a value of about 1.4 as the 
Poisson mean increases; although other sampling 
strategies produce different results.  

These calculations show that the Pareto 
exponents characterizing tails of the distributions of 
random damage inflicted on a region where the sizes 
of populated places obey a Ziph distribution derive 
from the number of elements affected by each 

 

Fig. 2. Pareto distribution fitted to populations of the 
436 US coastal counties from the 1950 Census. 



damaging event. For a selected P0, the bounding 
probability of the tail, D0, the bounding damage 
value is a function of the intensity of the damaging 
events and the vulnerability of the populated places. 
Large random variation for the Pareto exponent 
among realizations compromises the practical value 
of this insight for estimating real damage. It also 
poses a formidable challenge to detection of 
changes in damage as a result of factors such as 
climatic change, improved building standards or 
wiser land use.  

Zipf distributions of assets at peril form the 
basis of the idealized “Zipfistan” catastrophe mode 
(Hernandez and Willoughby 2014). The Zipfistan 
model is a “toy” version of the full-scale commercial 
models used in windstorm underwriting (e.g., 
Watson and Johnson 2004). It is designed to provide 
qualitative insight into underlying model behavior, 
much in the spirit of analytical solutions for 
baroclinic instability (e.g., Phillips 1954), one-

dimensional climate models (Budyko 1969, Sellers 
1969), or even the Gaia Hypothesis (Watson and 
Lovelock 1983). 

 In the Zipfistan model, Zipf-distributed assets 
are scattered randomly along a straight coast and 
subjected to virtual hurricanes whose climatology is 
loosely based upon that of Hurricanes that strike the 
US Atlantic coast.  Preliminary results show that the 
Zipfistan model can reproduce the tail of the 
distribution of the actual damage distribution and 
that large, random year-to-year fluctuations in 
damage present a substantial challenge to 
identifying the effects of climate change or 
mitigation measures in actual damage statistics. 
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Fig. 4. Box and whisker plots of Pareto exponents produced by weighted Poisson sums of elements drawn from the Zipf 
distribution in Fig. 3. Target symbols indicate the means; edges of the boxes mark the 25th and 75th percentiles; ends of the 
whiskers include all elements except outliers, indicated by red circles. When the intervals between the centers of the triangular 
markers do not overlap, the medians of the data represented by the boxes differ significantly at the 5% level.  
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