AN IDEALIZED HURRICANE CATASTROPHE MODEL
Javiera Hernandez* and Hugh E. Willoughby
Florida International University, Miami, Florida

Tropical Cyclones are recurring threats to the densely populated US coast. Post-tropical storm Sandy was an example of their devastating effects. US historical damage since 1900 scaled for population, inflation, and individual wealth (Pielke et al. 2008) show zero trends. Pareto distributions (e.g., Willoughby 2012a) fitted to the tails seasonally aggregated damage offers some insight. Pareto distributions are power-law approximations to other distributions’ tails such that \(\Pr(d \geq D) = P_\alpha (D_o / D)^\alpha \), where \(d \) is damage, \(D \) is cumulative-distribution damage, \(D_o \) is the threshold damage corresponding to probability \(P_\alpha \), and \(\alpha \) is the Pareto exponent. They can be interpreted as Taylor series approximations to the tails of log-normal distributions (e.g., Katz 2002, Willoughby 2012) that appear to describe hurricane impacts. What is the origin of the distributions’ fat tails? Tropical cyclone intensity and size have physical limits. Thus, the prominent tails of the damage distributions must stem from the distributions of assets at risk. It is generally accepted (Ades and Glaeser 1995, Gabiax 1999) that sizes of populated places obey Zipf distributions in which their sizes are inversely proportional to their largest-

*Corresponding Author Address: Javiera Hernandez, Dept. of Earth and Environment, Florida International University, Miami, FL 33199. Email: jhern385@fiu.edu
to-smallest ranking. Zipf distributions are essentially Pareto distributions with unit exponent.

When coastal county population census data (Pielke et al. 2008) is ranked, plotted on a log-log scale and fitted with a Pareto distribution, early census years, such as 1900, produce Pareto exponents close to 1, while 2000 and 2010 have Pareto exponents as large as two. A reason for this discrepancy is that Zipf distributions describe population centers and not necessarily counties. In 1900 each county tended to be dominated by one population center. By the 21st century, counties often contained multiple centers so that the central limit theorem adjusts their distributions toward a normal. We hypothesize that this “Aggregation Effect” is key to understanding how cumulative hurricane damage excedance probabilities with Pareto exponents > 1 arise (Willoughby and Hernandez 2014).

To test the hypothesis that the Pareto distribution of US damage is inherited from the distribution of the assets at risk, an idealized hurricane catastrophe model was created. It is easily configured to explore different scenarios and test sensitivities. The model is based upon an idealized virtual country (Zipfistan) where assets that scale as populations of locales that obey Zipf distributions are scattered randomly along a straight coastline. Realizations encompass a specified number of seasons, nominally 100. They can be executed either each with a unique Zipfistan demographic or all using a common demographic. Within each season the numbers of hurricane landfalls obey either Poisson or negative binomial distributions. Intensities are uniformly distributed between 33 m s$^{-1}$ and a specified Maximum Potential Intensity (MPI, Emanuel, 1986, 1999), nominally 80 m s$^{-1}$. Wind profiles obey either Wood-White (Wood et al. 2012) or Holland (2007) parametric models (Fig. 1). Vulnerability curves for populated places follow a sigmoid polynomial curve with specified thresholds of initial damage and total destruction. All specified parameters can be changed from case to case or assigned linear time variations to explore model sensitivities. After each realization, damage is ranked and plotted on log-log scales to be fitted with Pareto distributions (Fig. 2). After minor model tuning, results yielded Pareto exponents that agreed reasonably well with experience for both individual landfalls ($\alpha = 1.14$) and seasonal aggregates ($\alpha = 1.37$).

The Zipfistan model is adaptable enough to support a gamut of experiments. Perhaps the most pressing of these is detection of increases in damage as MPI increase on a warming planet (Fig. 3). The standard analysis entails comparing the control and “treatment” experiments by plotting them and testing their median and mean differences with Mann-Whitney, Kolmogorov-Smirnov and Bootstrap tests. A significant preliminary result is that changes from control to treatment cases need to produce in 150-200% changes in damage to produce statistically significant differences between most of the possible comparison pairs in 100-yr simulations (Fig 4).

The model readily adapts to other experiments testing, for example, changes of landfall rates or vulnerability. So far, experimentation has focused on detection of differences between stationary century-long simulations. A more pressing question is detection of trends over decadal time scales. The current model has some unrealistic features inasmuch as it simulates only windstorm losses, but it is straightforward to include effects of storm surge and inland flooding. All of the populated places are assumed to be distributed in one dimension along the coast, but a two-dimensional version that includes distances inland and models inland wind...
decay is a relatively simple enhancement, as are geographic variations of MPI or landfall frequency.

References:

