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Tropical Cyclones are recurring threats to the 
densely populated US coast. Post-tropical storm 
Sandy was an example of their devastating effects. 
US historical damage since 1900 scaled for 
population, inflation, and individual wealth (Pielke et 

al 2008) show zero trends. Pareto distributions (e.g., 
Willoughby 2012a) fitted to the tails seasonally 
aggregated damage offers some insight. Pareto 
distribution are power-law approximations to other 

distributions’ tails such that Pr{d ≥ D} = Po (Do /D)α, 
where d is damage, D is cumulative-distribution 
damage, Do is the threshold damage corresponding 
to probability Po, and α is the Pareto exponent. They 
can be interpreted as Taylor series approximations 

to the tails of log-normal distributions (e.g., Katz 
2002, Willoughby 2012) that appear to describe 
hurricane impacts. What is the origin of the 
distributions’ fat tails? Tropical cyclone intensity and 
size have physical limits. Thus, the prominent tails of 
the damage distributions must stem from the 
distributions of assets at risk. It is generally accepted 
(Ades and Glaeser 1995, Gabiax 1999) that sizes of 
populated places obey Zipf distributions in which 
their sizes are inversely proportional to their largest-
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Fig. 1. Upper panel: Radial profile of wind as a function of cross-track distance in virtual cyclone Alice of simulated year 1951 in the 
Zipfistan model. The black curve is the symmetric Wood-White wind profile, and the blue curve is the profile modified to reflect cyclone 
motion and the extension of the wind across the front to the eye. Lower panel: Populated places within 100 nm of Alice’s landfall. The 
total height of each bar represents the pre-storm wealth in each populated place. The red portion is the damage; and the blue is the 
remaining wealth after the storm.  



 
Fig. 2. An example of the Pareto distribution of damage 
produced by the Ziphistan model. 

to-smallest ranking. Zipf distributions are essentially 
Pareto distributions with unit exponent.  

When coastal county population census data 
(Pielke et al. 2008) is ranked, plotted on a log-log 
scale and fitted with a Pareto distribution, early 
census years, such as 1900, produce Pareto 
exponents close to 1, while 2000 and 2010 have 
Pareto exponents as large as two. A reason for this 
discrepancy is that Zipf distributions describe 
population centers and not necessarily counties. In 
1900 each county tended to be dominated by one 
population center. By the 21st century, counties 
often contained multiple centers so that the central 
limit theorem adjusts their distributions toward a 
normal. We hypothesize that this “Aggregation 
Effect” is key to understanding how cumulative 
hurricane damage excedance probabilities with 
Pareto exponents > 1 arise (Willoughby and 
Hernandez 2014).  

To test the hypothesis that the Pareto 
distribution of US damage is inherited from the 
distribution of the assets at risk, an idealized 
hurricane catastrophe model was created. It is easily 
configured to explore different scenarios and test 
sensitivities. The model is based upon an idealized 
virtual country (Zipfistan) where assets that scale as 
populations of locales that obey Zipf distributions 
are scattered randomly along a straight coastline. 
Realizations encompass a specified number of 
seasons, nominally 100. They can be executed either 
each with a unique Zipfistan demographic or all 
using a common demographic. Within each season 

the numbers of hurricane landfalls obey either 
Poisson or negative binomial distributions. 
Intensities are uniformly distributed between 33 
ms−1 and a specified Maximum Potential Intensity 
(MPI, Emanuel , 1986, 1999), nominally 80 ms-1. 
Wind profiles obey either Wood-White (Wood et al. 
2012) or Holland (2007) parametric models (Fig. 1). 
Vulnerability curves for populated places follow a 
sigmoid polynomial curve with specified thresholds 
of initial damage and total destruction. All specified 
parameters can be changed from case to case or 
assigned linear time variations to explore model 
sensitivities. After each realization, damage is ranked 
and plotted on log-log scales to be fitted with Pareto 
distributions (Fig. 2). After minor model tuning, 
results yielded Pareto exponents that agreed 
reasonably well with experience for both individual 
landfalls (α = 1.14) and seasonal aggregates (α = 
1.37).  

The Zipfistan model is adaptable enough to 
support a gamut of experiments. Perhaps the most 
pressing of these is detection of increases in damage 
as MPI increase on a warming planet (Fig. 3). The 
standard analysis entails comparing the control and 
“treatment” experiments by plotting them and 
testing their median and mean differences with 
Mann-Whitney, Kolmagorov-Smirnov and Bootstrap 
tests. A significant preliminary result is that changes  
from control to treatment cases need to produce in 
150-200% changes in damage to produce statistically 
significant differences between most of the possible 
comparison pairs in 100-yr simulations (Fig 4).   

The model readily adapts to other experiments 
testing, for example, changes of landfall rates or 
vulnerability. So far, experimentation has focused on 
detection of differences between stationary century-
long simulations. A more pressing question is 
detection of trends over decadal time scales.  The 
current model has some unrealistic features 
inasmuch as it simulates only windstorm losses, but 
it is straightforward to include effects of storm surge 
and inland flooding. All of the populated places are 
assumed to be distributed in one dimension along 
the coast, but a two-dimensional version that 
includes distances inland and models inland wind 



decay is a relatively simple enhancement, as are 
geographic variations of MPI or landfall frequency. 
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Fig. 3. Box and whisker plots comparing ten, 113 yr Ziphistan realization that have 180 kt MPI (blue) with ten that have 210 kt (red) MPI.  
The difference in MPI is equivalent to 1½ Saffir-Simpson categories. The ordinate is common log of seasonally aggregated damage in 
billions of dollars. Corresponding realizations with different MPIs use the same random-number seed so that they are identical apart from 
different intensity. Of the 100 pairs of comparisons, about ⅔ were significantly different at p = 5% using standard nonparametric tests. 
When the “treatment” MPI was reduced to 200 kt, only ⅓ of the pairs are significantly different, and when it is 190 kt, about ⅟10 were 
significantly different.  


