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Abstract  

The Suomi National Polar-Orbiting Partnership 
satellite (SNPP) launched in October, 2011, is part of 
the Joint Polar Satellite System (JPSS), the next 
generation polar-orbiting operational environmental 
satellite system. SNPP carries five instruments, 
including Visible Infrared Imaging Radiometer Suite 
(VIIRS) and Advanced Technology Microwave 
Sounder (ATMS). The time scale of tropical cyclone 
track and intensity changes is on the order of 12 
hours, which makes JPSS instruments well suited for 
the forecasting of these parameters. Two basic 
methods exist for improving tropical cyclone forecasts 
with SNPP. First is to assimilate data in numerical 
forecast models, and second is to improve analysis 
and statistical post-processing forecast products. Our 
group is developing two applications focusing on the 
second approach. 
 
The first application, the tropical cyclone Maximum 
Potential Intensity (MPI) estimate algorithm, is using 
temperature and moisture retrievals from ATMS in the 
near storm environment to improve intensity analysis 
and forecasting. While tropical cyclone track errors 
have improved dramatically over the past few 
decades, the ability to forecast intensity changes has 
improved much more slowly. An especially difficult but 
very important forecast problem is predicting rapid 
changes in tropical cyclone intensity. Improving these 
forecasts is one of the highest priorities within NOAA. 
Accuracy of both, the Logistic Growth Equation Model 
(LGEM), the most accurate of the statistical models 
over the past few years, and the Rapid Intensification 
Index (RII) tool critically depends on the accuracy of 
the MPI estimate. Operational versions of LGEM and 
RII use statistical MPI calculated from Sea Surface 
Temperature (SST) only. We investigate the use of 
ATMS-MIRS retrievals as input into the MPI algorithm 
to improve RII and LGEM forecasts. The MPI 
algorithm was adapted for use with ATMS 
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temperature and moisture profiles. Preliminary 
estimates for the Atlantic basin show up to 4.6% Brier 
Skill Score increase in RII estimates. Newly available 
data are being incorporated into existing intensity 
estimation techniques and into LGEM to improve their 
performance. Results of improved MPI estimates for 
the Atlantic, as well as the East and West Pacific 
Basins, will be presented together with a discussion of 
implications for LGEM forecast performance. 
 
The second application, the multi-spectral center fix 
algorithm, uses ATMS and VIIRS data for improving 
center location estimates of tropical cyclones. 
Estimating the center location is one of the first steps 
in the forecast process. The accurate center estimate 
impacts all downstream forecasts, providing better 
satellite intensity estimates and better numerical 
model forecasts. Currently, most existing operational 
center fix methods are subjective, and little 
investigation has been made into the use of objective 
techniques. The goal of this project is to improve real-
time estimates of tropical cyclone centers using 
machine learning methods in conjunction with newly 
available satellite data. Preliminary results from using 
pressure estimates only from AMSU statistical 
temperature retrievals for the Atlantic, for the years 
2006-2011 (total of 2012 cases), showed 10% 
improvement in accuracy in comparison to the storm 
center first guess estimates available in real time. The 
analysis is being improved by using ATMS data 
together with multi-spectral imagery from VIIRS, 
including the low-light imager. Results of the improved 
analysis will be presented together with the discussion 
of the possible forecast improvements. 
 
1. INTRODUCTION  
 

Improving tropical cyclone (TC) track and intensity 
forecasts will lead to improved warnings and longer 
lead times for mitigation activities from TCs. The 
Suomi National Polar-Orbiting Partnership satellite 
(SNPP) launched in October, 2011, is part of the Joint 
Polar Satellite System (JPSS), the next generation 
polar-orbiting operational environmental satellite 
system. SNPP carries five instruments, including 
Visible Infrared Imaging Radiometer Suite (VIIRS) and  
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Figure 1. Hurricane Sandy azimuthally averaged temperature profile anomaly, October 27, 2012. The anomaly 
is calculated relative to the mean vertical profile (weight averaged by radius). AMSU retrievals shows 
artificial cold bias al low levels, while ATMS better resolves warm core and does not produce artificial cold 
bias. 
 

Advanced Technology Microwave Sounder (ATMS).  
The time scale of TC track and intensity changes is on 
the order of 12 hours, which makes JPSS instruments 
well suited for the forecasting of these parameters. 
 
Two basic methods exist for improving TC forecasts 
with SNPP. The first is to assimilate data in numerical 
forecast models, and the second is to improve 
analysis and statistical post-processing forecast 
products. Our group is developing two applications, 
focusing on the latter approach. The first application 
uses temperature and moisture retrievals from ATMS 
in the near storm environment to improve intensity 
analysis and forecasting. This new information is 
being incorporated into existing intensity estimation 
techniques and to operational statistical-dynamical 
intensity forecast models, including the Logistic 
Growth Equation Model (LGEM), to improve their 
performance. The second uses VIIRS and ATMS data 
for improving center location estimates of TCs, which 
is the starting point for TC forecasts. Methods are 
being developed to use multi-spectral imagery from 
VIIRS, including the low-light imager, in combination 
with sounder data for this purpose. These new 
products will be made available in the satellite Proving 
Ground to operational forecasters at the National 
Hurricane Center (NHC) and Joint Typhoon Warning 
Center (JTWC) for evaluation and feedback. If the 
evaluation is positive, the products can be transitioned 
to NHC and JTWC operations. 
 
The paper is organized in the following way: 1) in the 
“data and methods” section we describe ATMS 
retrievals used for this study, and in the sections 2) 
and 3) we discuss the results obtained for each of the 
two applications. 
 

2. DATA AND METHODS 

 
ATMS represents a significant improvement in 
temperature and moisture retrievals over the current 
Advanced Microwave Sounding Unit (AMSU) 
instrument. Finer resolution and wider scan swath 
width result in better and more frequent TCs 
observations, along with a larger number of usable 
soundings. Compared to AMSU, ATMS has almost 
twice the resolution at nadir (26 km ATMS vs. 52 km 
AMSU) in some channels, and the ATMS swath width 
is 2503 km compared to the 2200 km AMSU swath 
width. The most important improvement for TC 
applications is that ATMS has temperature and 
moisture sounding channels combined on the same 
instrument, including one new temperature channel 
(51.7 GHz) for sounding the lower troposphere, and 
two new moisture channels (183 +- 1.8 GHz and 183 
+- 4.5 GHz), which were not previously available on 
AMSU.  Further details of ATMS instrument can be 
found in Weng et al. (2012).  
 
In addition to the new instrument, ATMS data are 
processed with the new Microwave Integrated 
Retrieval System (MIRS) retrieval scheme 
(Boukabara et al., 2011), which offers several 
advantages over the current statistical retrievals 
utilized in our previous work. Thus, ATMS-MIRS is 
better resolving the TC warm core, and the 
simultaneous retrieval of temperature and moisture 
profiles allows significant reductions in the artificial 
cooling in the areas of  high cloud liquid water and ice 
scattering, which are strongly affecting statistical 
AMSU retrievals (Bessho et al., 2006; Demuth et al., 
2004). Figure 1 shows comparison of azimuthally-
averaged vertical temperature profile between AMSU 
and ATMS retrievals, on October 27, 2012. These  



 
Figure 2. ATMS MIRS temperature and moisture retrievals for a case from Hurricane Leslie, including the 700 
hPa relative humidity field (RH) (upper left), and radial-height cross sections of RH (upper right), temperature 
anomaly (lower left) and RH anomaly (lower right). 
 
profiles are only about one hour apart, and therefore, 
the differences should be attributed to the differences 
in retrieval algorithms and instruments. The statistical 
AMSU retrieval is producing pronounced artificial 
cold-bias at low levels. ATMS retrievals, for which 
both temperature and moisture profiles are used, 
better resolve the warm core, and do not produce this 
artificial cold bias. Based on this result, we expect to 
obtain better wind retrievals from ATMS for the center 
fix algorithm and better representation of the near 
storm environment for the intensity forecast 
applications. 
 
The MIRS temperature and moisture retrievals 
become operational in Feb 2014. A large sample of 
cases produced using the same algorithm and in the 
same format as those that became  available 
operationally were obtained from NESDIS/STAR. This 
sample includes 43 days for 23 TCs from 2012, and 
21 days for 15 TCs from 2013, providing over 300 

cases from the 2012 and 2013 hurricane and typhoon 
seasons. This dataset is being used for the majority of 
the algorithm testing described below.  
 
In the MIRS retrievals the water vapor is retrieved in 
terms of mixing ratio. We developed methods to 
convert it to relative humidity (RH), analyze the data in 
storm-centered coordinates, perform azimuthal 
averages, and generate perturbation fields. Figure 2 
shows an example of a 700 hPa RH field for 
Hurricane Leslie from the 2012 Atlantic season (upper 
left). The temperature anomaly plot (lower left) shows 
a very realistic warm core structure, which does not 
require low-level correction for high cloud liquid water 
(CLW) and ice scattering (Demuth et al., 2004). The 
structure of the moisture fields as seen in the the 
radial-height cross sections of the azimuthally 
averaged RH (upper right), and RH anomaly (lower 
right) look very reasonable, with RH increasing near 
the storm center. Preliminary comparison shows that  



 
 
Figure 3: MPI estimate for 2013 Typhoon Danas (WP23)  Shown:  Best Track intensity (black line), ATMS MPI 
at swath times (red dots) and GFS MPI at synoptic times (green dots).  Weekly Reynolds SST at the storm 
center  (cyan rombs) used for both MPI calculations is shown  for reference. 
 
 
RH values at 600 km from the storm center are similar 
to Jordan mean tropical sounding (Dunion et. al, 
2008), and RH values near the center of the storm are 
similar to dropsondes data (not shown). 
 
3. MAXIMUM POTENTIAL INTENSITY ESTIMATE 
 

TC track errors have improved dramatically over the 
past few decades, primarily due to improvements in 
data assimilation and forecast models. However, the 
ability to forecast intensity changes has improved 
much more slowly (DeMaria et al. 2007; DeMaria et 
al. 2014). An especially difficult but very important 
forecast problem, especially for storms close to land, 
is predicting rapid changes in TC intensity. Improving 
these forecasts is one of the highest priorities within 
NOAA. Because of the importance of this problem, an 
operational tool called the Rapid Intensification Index 
(RII) has been developed (Kaplan et al, 2010). The 
RII uses a subset of the input to LGEM forecast in a 
discriminant analysis algorithm to estimate the 
probability of rapid intensity changes. 
 
3.1 Maximum Potential Intensity estimate from 
ATMS data 
 

The accuracy of the LGEM forecast, the most 
accurate of the statistical models over the past few 
years, critically depends on the accuracy of the 
Maximum Potential Intensity (MPI) estimate. 
Currently, the operational LGEM and RII at National 
Hurricane Center (NHC) use the MPI calculated from 
a simple statistical algorithm (DeMaria and Kaplan, 
1994), which only uses SST data and does not take 

into account temperature and moisture soundings. We 
investigate the use of ATMS-MIRS retrievals as input 
into the more general Bister and Emanuel (1998) MPI 
algorithm to improve RII forecast. Following Emanuel 
(1988) and Bister and Emanuel (1998), MPI can be 
calculated from ATMS-MIRS T,q, and SLP together 
with SST data as 
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where Ts and To are the surface temperature and the 
temperature at the outflow level;  k* and k are the 
saturation enthalpy of the sea surface and the actual 
enthalpy of the boundary layer air, respectively; and 
Ck/CD is the specified ratio of surface exchange 
coefficients for momentum and enthalpy.

 
Ts,To, k*,  

and k are estimated from soundings and SST. 
 
Algorithms were developed to calculate ATMS 
temperature and RH soundings, and the MPI 
algorithm was successfully adapted to use as input 
the ATMS retrievals. Bister and Emanuel (1998) MPI 
was calculated for all 2012 and 2013 cases in the 
preliminary MIRS dataset. The MPI algorithm is very 
sensitive to SST used as input. In order to separate 
the effect of the SST input from the effect of different 
atmospheric profiles, as calculated from GFS model 
and ATMS, all estimates were processed using the 
same weekly Reynolds SST temperature that was 
used in the operational version of SHIPS and LGEM. 
Figure 3 shows a comparison of the MPI estimates 
from two datasets for Typhoon Danas from 2013 north 
West Pacific season, the MPI calculated from Bister 
and Emanuel (1998) theoretical formula with storm  



 
Figure 4: Bister and Emanuel (1998) MPI (kt) 
calculated  from ATMS and GFS moisture and 
temperature profiles, with all other parameters 
kept identical.  The dots are colored by the SST at 
the center of the storm above or below 28 

o
C, and 

by basin. The red and blue dots show AL storms 
with SST at the storm center below and above 
28

o
C, correspondingly; magenta and cyan dots 

show the same for EP, and yellow and blue dots – 
for WP. The atmospheric profiles, including 
temperature and moisture profiles, and sea level 
pressure (SLP) are calculated from either ATMS or 
GFS, while all other parameters, including SST, 
are kept identical. T, q, SLP are averaged between 
200 and 800 km for all calculations. 

 

environmental soundings from the GFS analysis 
(green circles), and the MPI calculated from the same 
formula with environmental soundings from ATMS 
(red circles). Also shown in this figure are the weekly 
Reynolds SST (Reynolds et al., 2007) values that 
were used to calculate both MPI estimates. There are 
significant differences between the MPI results, with 
the ATMS input resulting in higher values during the 
storm intensification. Figure 4 shows the scatter plot 
of MPI with GFS versus ATMS sounding input, with 
the dots colored by the SST at the center of the storm 
above or below 28

o
C, and by basin.  The T, q profiles 

and sea level pressure (SLP) for all calculations were 
averaged between 200 km and 800 km to represent 
near-storm environment. The weekly Reynolds SST, 
used in all calculations, is a single point value at the 
storm center. The ATMS MPI is similar to GFS MPI 
for weaker storms for AL, EP, and WP storms. For 
MPI greater than about 100 kt, in some cases the 
GFS MPI is larger than ATMS MPI, and in some 
cases that relationship is reversed. The reasons for 
these differences are being investigated. The 
differences shown in Fig. 3 indicate that the 
replacement of the GFS soundings with those from 
ATMS will have some impact on the LGEM forecasts, 
since both SHIPS and LGEM use  MPI  as one of the 
main parameters. The related RII will also be 
impacted by this change. The forecast impact on the 
RII and LGEM is discussed below.  

3.2 Effect of using different MPI estimate on the 
Rapid Intensification Index 
 

The RII estimates the probability that a storm will 
rapidly intensify, as indicated by a 30 kt or greater 
increase in the maximum wind in the following 24 h. 
The newest version of the RII also provides probability 
estimates for 25, 35 and 40 kt increases in 24 h. The 
RII has also been adapted to run with the new MPI 
estimates with ATMS. RII is calculated based on 
current MPI and four predicted MPI values at 6 h 
intervals along the forecasted storm track. As the 
initial value we used the calculated ATMS MPI, and 
as predicted values we used GFS MPI corrected by 
the initial difference between the ATMS and GFS MPI 
values. This work uses preliminary pre-operational 
ATMS-MIRS dataset, and  as result, we have a very 
small number of cases to work with: 130 cases 
including 13 RI cases for the Atlantic Basin (AL), 176 
cases including 31 RI cases for the north West Pacific 
Basin (WP), and 38 cases including only one RI case 
for East Pacific Basin (EP). That number of cases is 
not sufficient to calculate reliable forecast statistics, so 
the results presented below are preliminary. 
Sensitivity tests for RII probability (not shown) show 
that there is considerable forecast sensitivity to the 
MPI calculation, with RII probability changing by up to 
30%. 
 
Figure 5 shows observed and predicted 25 Kt RII 
probabilities for major hurricane Michael, AL13, 2012. 
The green bars indicate times for which RI occurred in 
next 24 hours. Red and blue stars/triangles show RII 
predicted based on MPI calculated from GFS fields 
(red) and from ATMS retrievals (blue). Although both 
RI estimates are somewhat late in that the highest 
probabilities were for the period after the RI occurred, 
the ATMS-based RII goes down much quicker after 
hurricane intensification ended, thus contributing to 
lower bias and higher Brier Skill Score (BSS). 
 
The recently developed global version of 
SHIPS/LGEM/RII code was successfully adopted for 
use with ATMS input. The global version of the code 
now allows to run LGEM for WP using MPI calculated 
from ATMS profiles, in addition to AL and EP. Table 1 
shows preliminary statistics for RII with ATMS/GFS 
input for all AL and WP cases. It could be seen that 
the  Brier Score (BS) in all cases is slightly smaller 
when using ATMS profiles to calculate MPI, which 
indicates slight improvement. Brier Skill Score (BSS) 
and bias, which is always smaller when using ATMS 
profiles, also indicates slight improvement in the RII 
forecast for all AL and WP cases. These results look 
encouraging, however, as shown in the last column in 
Table 1, only a very small number of cases is used for 
each calculation. Considerably larger sample sizes 
are required to obtain reliable statistics. The statistics 
for the EP cases cannot be calculated at this time 
because we have only one RI case for EP in our 
database. 



 

 

Figure 5: RII for 25 knots for Hurricane Michael, AL13 2013. Green dots show observed RII index, which is 0 if 
no RI occurred, and 100% if RI occurred. Red line with stars shows RI forecast based on operational GFS 
model fields, and blue line with triangles shows RI forecast with MPI calculated from ATMS data. The bias of 
ATMS data is 1.67 compared to 1.87 bias from GFS. 

 

Table 1: RII statistics for AL (for 25,30,35, and 40 kt) and WP (30kt) basins. The table shows Brier Score (BS), 
Brier Skill Score in % (BSS), and Bias calculated for RII forecast using MPI calculated from ATMS and GFS 
profiles. All numbers are based on a very small number of RII cases (last column) and could possibly change 
as more data becomes available. 

 

 
3.2 Effect of using different MPI estimate on LGEM 
intensity forecast 

 
The LGEM model provides a deterministic forecast of 
maximum wind out to 5 days using a statistical-
dynamical approach (DeMaria 2009). The LGEM 
model was run with MPI calculated from GFS and 
ATMS profiles, and compared with the operational 
version. Figure 6 shows LGEM intensity errors 
comparison between three runs: CTRL run, GFS run, 
and ATMS run. CTRL is the control run that uses 
statistical MPI calculated from SST only, and uses the 
same settings as operational LGEM. GFS run uses 
GFS MPI, and ATMS run uses MPI estimated from 
ATMS profiles. Unlike RII, which is a short-term 
forecast (24 hours), the LGEM intensity forecast is 
made up to 5 days, and therefore it is less likely to be 

improved by using ATMS-based MPI at a single time 
at hour zero.  As can be seen from Figure 6, for the 
AL the GFS run shows slight improvement over 
control run, however, the ATMS run performs much 
worse than GFS run and CTRL. For EP both GFS run 
and ATMS run show slight improvement up to 60 h, 
and for WP the ATMS runs shows better results than 
the GFS run, however both are worse than the CTRL 
run. Again, all these results should be considered 
preliminary because of the small number of the 
available cases. We are investigating several 
possibilities that might contribute to better forecasts 
for both RI and intensity, including using dropondes to 
access the quality of ATMS data in the TC 
environment, and using a combination of GFS and 
ATMS data to obtain most realistic soundings and 
surface data to use as input to MPI algorithm.  

RI BS GFS 
BS 

ATMS 
BS Mean 

BSS 
(%) 

A/G 

BSS (%) 
G/M 

BSS (%) 
A/M 

Bias 
GFS 

Bias 
ATMS 

Basin 
# RII 

Cases 

25 kt 964.55 957.98 854.27 0.68 -12.91 -12.14 1.63 1.44 AL 13 

30 kt 723.53 718.46 667.83 0.70 -8.34 -7.58 1.30 1.15 AL 10 

35 kt 477.11 467.65 413.10 1.98 -15.49 -13.20 1.26 1.00 AL 6 

40 kt 248.40 243.55 211.88 1.95 -17.24 -14.95 1.63 1.37 AL 3 

30 kt 1044.39 996.30 1586.00 4.60 34.15 37.18 0.56 0.61 WP 31 



 
Figure 6. LGEM forecast intensity errors. a) Official NHC forecast (green stars), operational LGEM foracast 
from NHC (red stars), and operational LGEM rerun at CIRA,  (blue stars). b) LGEM forecast for AL basin as 
run at CIRA using operational LGEM (blue stars), LGEM with MPI calculated from GFS (green stars), and 
LGEM wuth MPI calculated from ATMS soundings (red stars). c) Same as b), but for EP. d) Same as b), but for 
WP.  
 
 
4. CENTER-FIX ALGORITHM  

 
When a TC has formed, typically the first step in 
producing a forecast is to perform a center-fix to 
estimate the location of the low-level circulation center 
of the storm.  An accurate center estimate is 
necessary to prevent initial errors from impacting later 
steps in forecast production. While aircraft 
reconnaissance can be used to produce highly 
accurate center estimates, only about 30% of all TC 
forecasts have aircraft data available for their 
production in the Atlantic, and most other TC basins 
have no aircraft data. Satellite data are available at a 
much higher rate; however, most of the existing 
center-fix algorithms are subjective, and due to the 
limited amount of time that forecasters have to 
perform prediction for TCs, satellite imagery is an 
underutilized resource for performing center-fixing. 
The only existing objective center-fix algorithm 
developed by Wimmers and Velden (2010) is primarily 
using spiral patterns in microwave imager data, but 
does not use microwave sounder data. Our technique 
uses microwave sounder data, which provides a more 
physical representation of a cyclone, to estimate 

pressure, and is novel in its use of techniques from 
the field of machine learning. Additionally, one of the 
aims of the proposed method is to improve 
performance for weak storms.  
 
Because of the fairly coarse resolution of the 
microwave sounder data relative to IR and visible 
imager data, both will likely be needed to determine 
the best estimate of the TC center position. Methods 
for microwave and IR/vis data are first developed 
separately, with the goal of combining them in an 
optimal way. The microwave sounder algorithm is 
described first, followed by the IR/vis technique.  
Since a large sample of ATMS data is not yet 
available, the microwave sounder technique was 
tested primarily using AMSU data.  
 
4.1 Quadratic Discriminant Analysis of microwave 
data 

 
Using the hydrostatic integration of temperature 
retrievals (AMSU for initial testing), the proposed 
algorithm poses the center-fixing problem as a 
variation of a classification problem. That is, using a 
grid-cell in an AMSU retrieval field as input, the output 



of the algorithm should be a value indicating the 
probability that the grid-cell contains a storm center 
(class A) and a value indicating the probability that the 
grid-cell does not contain a storm center (class B).  
Due to its relative ease to implement, Quadratic 
Discriminant Analysis (QDA) was selected as the 
algorithm to perform the classification (Bishop, 2006). 
In order to perform the classification, QDA must be 
trained.  A large dataset of statistical AMSU retrievals, 
from 2006-2011, was used to train the algorithm. The 
dataset was assembled by randomly selecting 70% of 
the available retrievals from  2006-2011 and further 
selecting only cases that had times that fit between 
the beginning and end of the appropriate NHC best-
track file.  Additionally, only retrievals where the storm 
under examination had maximum winds over 35 kt 
were included.  The retrievals within the remaining 
30% of available data that met the same criteria were 
selected to be the test data set.  The training set 
consisted of 1605 AMSU retrievals and the testing set 
consisted of 416 AMSU retrievals.   
 
A small dataset of ATMS-MIRS retrievals from 2012 
was also made available for use with this algorithm.  
Using the same method as described above, a 
training set of 146 ATMS retrievals and a testing set 
of 90 ATMS retrievals were assembled.  Additionally, 
a testing set using all 236 ATMS retrievals was 
assembled for use with the AMSU training set.  
 
For each retrieval, a 5x5 grid-cell area around the 
real-time center fix provided by the NHC forecast from 
the first synoptic time before the time of the AMSU 
data (referred to as the extrapolated point) was 
selected. The grid contains the 700 hPa geopotential 
height fields determined from the hydrostatic 
integration of the AMSU or ATMS retrievals. The grid 
spacing is 0.2 latitude/longitude. The center-location 
reported by the NHC best-track was then calculated 
by generating a spline path through the locations in 
the appropriate best-track file and finding the 
interpolated position corresponding to the retrieval 
time.  Further, each grid-cell was examined to 
determine if the best-track center position was located 
within the grid-cell and marked as the appropriate 
class.  Using this training dataset, QDA was used to 
generate a function for each of the two classes 
relating the input values to the probability that they 
belong to that class.  These functions are referred to 
as discriminant functions. The inputs to the 
discriminant functions are the geopotential height field 
and several parameters derived from it, including the 
distance from the grid point with the height minimum, 
and the magnitude of the horizontal height gradient. 
Once these two functions have been generated, 
center-fixes can then be performed for any retrieved 
geopotential height field.  First, a 5x5 grid-cell area 
around the extrapolated point is selected.  The 
geopotential height field and derived parameters from 
these grid-cells are then used as input to both 
classifier (discriminant) functions. The value for the 
class B discriminant function is then subtracted from 

the value returned from the class A discriminant 
function for each grid-cell.  The grid cell with the 
maximum difference value is selected as the grid-cell 
that is most likely to contain the storm center for that 
retrieval. 

 
 

Figure 7: Errors in the center location estimate 
using the NHC best track positions interpolated to 
the time of the microwave pass. For each pair of 
bars (blue, red green), the left bar is the error of 
the first guess position and the second one is the 
error after the first guess has been updated using 
the quadratic discriminant analysis (QDA) 
technique. Results show that using the ATMS data 
provides a bigger improvement than the AMSU 
data, even for the case where the algorithm 
trained on AMSU data is used with ATMS input.   

 
To evaluate the performance of the center-fix 
algorithm we compare the distances from the storm 
center reported by NHC best-track to 1) the storm 
center estimated by our algorithm and 2) to the 
extrapolated position (baseline distance). Figure 7 
shows the results of three tests which were performed 
to measure the performance of the center-fix 
algorithm: the AMSU trained algorithm run against the 
AMSU test set (AMSU-AMSU, blue bars), the 146 
ATMS retrieval trained algorithm run against the 90 
ATMS retrieval test set (ATMS-ATMS, red bars), and 
the AMSU trained algorithm run against the 236 
ATMS retrieval test set (AMSU-ATMS, green bars). 
The real-time center fixes for the AMSU-AMSU test 
had a mean error of 0.451 degrees, while the output 
of the center-fix algorithm produced a mean error of 
0.400 degrees. The real-time center fixes for the 
ATMS-ATMS had a mean error of 0.604 degrees 
compared to the center-fix algorithm mean error of 
0.520 degrees. The real-time center fixes for the 
AMSU-ATMS test had a mean error of 0.587 degrees 
and the center-fix algorithm had a mean error of 0.477 
degrees.  So for the AMSU-AMSU, ATMS-ATMS, and 
AMSU-ATMS tests the center-fix algorithm saw an 
improvement over the real-time extrapolated center 
fixes of 11%, 14% and 19% respectively. It should be 
noted that the ATMS training and testing sets are very 
small and represent preliminary results.  The ATMS 



training and testing sets will be expanded in the future 
as more ATMS data becomes available.   
 
4.1 Circular Hough Transform of infrared data 

 

As described above, the sounder data can provide 
center estimates to improve upon the extrapolated 
position. However, the higher resolution VIIRS data 
will be needed to further refine these estimates. For 
that purpose, preliminary tests have been performed 
to investigate the use of a computer vision algorithm 
on IR data. The algorithm, known as the circular 
Hough transform (CHT), is a well-known computer 
vision algorithm for finding circular features in imagery 
(Swaminathan et al. 2013).  A description of the 
algorithm and its use identifying circular features in 
ultrasound imagery of nuclear reactors can be found 
in Swaminathan et al., 2013. An implementation of the 
algorithm was produced and run on infrared images 
containing tropical cyclones at various points in their 
lifetimes. A total of five storms were selected for the 
initial examination. Each storm was selected to be 
representative of a type of TC that may be 
encountered by a center-fixing routine.  The following 
list provides the name of each storm and the type of 
storm it represents: 

 

 Charley 2004 – Very small but intense 
hurricane 

 Katrina 2005 – Classic large, intense 
hurricane 

 Erika 2009 – Very disorganized weak tropical 
cyclone, did not make it to hurricane strength 

 Earl 2010 – Strong hurricane in higher 
latitudes 

 Sandy 2012 – Unusually large but only 
moderate strength, non-classical hurricane 
structure 

 

Figure 8: Mean errors reported from using the 
circular Hough transform on IR images to perform 
automatic center fixing. Shown are: A-Desk errors 
(blue bar), CHT errors for all cases (red bar), CHT 
errors for images containing an eye (green bar), 
and CHT errors for images without an eye (yellow 
bar). 

The entire lifetime of each of these storms at 6 h 
intervals was examined, thus making a total of 135 IR 
images used to evaluate the CHT performance. 
GOES data were utilized since the VIIRS data was 
not available for most of these cases.  The distance 
between the center location reported by the algorithm 
and the best-track location was computed for each 
image. Additionally, the distance between the real-
time location produced by the NHC, extrapolated to 
the time the IR image was created, and the best-track 
was used as a baseline comparison.  The results can 
be seen in Figure 8.  While the algorithm performed 
fairly well on images containing an eye, greater error 
was experienced when no eye was present. However 
in cases without an eye, the algorithm was able to 
effectively find the center of the cloud shield. Relating 
the center of the cloud shield to the rotational center 
of the storm may be an effective method of performing 
automated center-fixing and further work will be 
performed to investigate this possibility. For the 
weaker systems, additional information will be needed 
such as spiral cloud lines from visible and day-night 
band imagery, circulation centers and vertical wind 
shear estimates from ATMS wind retrievals.   

 

Figure 9. The IR  image of TC Erika (AL06, 2009) 
illustrates the  case where the rotational center of 
the storm is located outside of any circular 
structure in the image and thus the CHT algorithm 
is unable to generate a center estimate near the 
true center.  

 

The difference in performance between images with 
and without an eye has a fairly straightforward 
explanation. The algorithm was able to successfully 
identify the center of circular features in the imagery 
such as the center of eyes as well as the center of 
cloud shields.  Unfortunately, in many cases, vertical 
wind shear shifts the rotational center of the storm far 
from the center of its cloud shield.  A particularly 
extreme case can be seen in Figure 9.  



In this image of 2009 AL TC Erika, it can be seen that 
the rotational center was not located within the cloud 
shield at all, thus causing the center identified by the 
CHT to be distant from the true center location. In the 
future, a refinement of the algorithm may be able to 
use information about the vertical wind shear to 
produce an improved center fix.  One interesting side 
effect of performing this investigation is that the 
techniques required to perform the CHT on imagery 
as well as the CHT itself may lead to the development 
of a novel technique for performing automatic eye 
detection from IR imagery. Future work may involve 
testing related algorithms for performing automatic 
eye detection. 

 

5. CONCLUSIONS AND FUTURE PLANS 

 

Both LGEM deterministic and RII probabilistic 
intensity forecasts are critically dependent on MPI 
estimate, and it has been shown that they both could 
be significantly altered by using MPI calculated from 
ATMS profiles. Preliminary results for the RII forecast 
show slightly improved RII statistics, as estimated by 
BS, BSS, and bias for both AL and WP with the use of 
ATMS data, and possibly slight improvement in LGEM 
intensity forecast for EP for up to 60 hours. Both of 
these results are very encouraging, and will be further 
refined as more ATMS-MIRS data become available. 
In addition we are investigating several possibilities 
that might contribute to better forecasts of both RII 
and LGEM, including using dropsondes to access the 
quality of ATMS data in TC environment, and using 
combination of GFS and ATMS data to obtain most 
realistic soundings and surface data to use as input to 
MPI algorithm.  
 
Center fixing using QDA with microwave sounder 
retrievals as input showed up to 19% better center 
location as compared to the first guess position from 
the NHC real-time forecast positions. Although the 
use of the circular Hough transform did not meet our 
goals of improving the center-fix, future refinements of 
the algorithm may produce better results. Additionally, 
the CHT may prove useful to help solve other related 
problems such as automatic eye detection. The next 
step in the center-fix algorithm is the addition of VIIRS 
data, especially the Day Night Band (DNB) data, to 
refine the estimates from the microwave sounder 
input. Finally, both the intensity and the center-fix 
algorithms could be further improved by using Cross-
Track Infrared Sounder (CrIS) data. 
 
 
DISCLAIMER 

 
The views, opinions, and findings contained in this 
article are those of the authors and should not be 
construed as an official National Oceanic and 
Atmospheric Administration (NOAA) or U.S. 
Government position, policy, or decision. 
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