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1.  INTRODUCTION 
 The ways tropical cyclones respond and adapt to 
changes in large-scale climate are significant and 
potentially consequential questions for the coming 
century.  Analyses of simulations prepared for the 3rd 
Climate Model Intercomparison Project (CMIP3) showed 
that while environments may become more favorable for 
stronger storms by the end of this century, the overall 
number of storms may decline, largely owing to a 
reduction in the frequency of weak systems (e.g., 
Emanuel et al. 2008; Knutson et al. 2010).  Newer 
simulations completed for CMIP5 have shown some 
qualitatively similar behavior, but many of the 
differences between late 20th and 21st century output 
had smaller amplitudes and only marginal significances 
(e.g., Knutson et al. 2013).  Thus despite the significant 
progress over the last decade, the problem remains 
unfinished, and complementary research avenues have 
the potential for novel insights. 
 Here we perform many of the same analyses that 
have been done for climate change experiments within 
the CMIP suite, but apply the techniques to simulations 
of very different climate states.  The responses are 
potentially instructive because the same models 
examined for contemporary climate change have been 
run for paleoclimates of the Late Quaternary Period (i.e., 
the Last Glacial Maximum and Holocene).  These 
periods feature climate changes that are different and 
large compared to those of the present century, so the 
ways tropical cyclones respond to them offer interesting 
cases to contrast with findings reported from work with 
CMIP models. 
 The Last Glacial Maximum occurred 21,000 years 
ago (21ka) and featured tropical surface temperatures 
colder by 2-3ºC than the modern world.  Ice sheets 
covered many Northern Hemisphere continents, and 
atmospheric concentrations of CO2 were only 185 ppm.  
Korty et al. (2012a) showed that despite these changes, 
many of the large-scale environmental conditions 
necessary for tropical cyclone genesis today were 
similarly favorable (and in some regions even more 
favorable) for genesis in the colder climate.  The colder 
ocean temperatures are bound to a colder atmosphere, 
and the transfer of heat between the two media can 
occur as efficiently as in the modern world. The changes 
in environmental parameters shown by Korty et al.  
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(2012a, b) predict responses in the climatology of 
tropical cyclones, but comparisons with actual model 
generated storms or downscaled events has yet to be 
done.  That is the purpose of this work, and the 
comparison between simulated events and the 
simulated large-scale environment offers a potentially 
useful test of the ability to extrapolate empirical genesis 
indices to other climates. 
 We analyze output from simulations of NCARʼs 
Community Earth System Model (CESM) prepared for 
the most recent paleoclimate model intercomparison 
project (PMIP3) which were prepared concurrently with 
CMIP5.  The advantage of this simulation is that it 
contains 6 hourly output for the LGM, Mid-Holocene 
6ka, and Pre-Industrial Era periods at the same spatial 
resolution as the CMIP5 runs (~1º by 1º).  This temporal 
output frequency is necessary to track model-generated 
storms, and the resolution is comparable to models 
others have analyzed from CMIP.  The limitation of our 
approach is that most modeling groups archive 
paleoclimate output in monthly means, eliminating the 
possibility of tracking vortices and comparing across an 
ensemble of models.  Nevertheless, we view this 
analysis of the available data as an important first step 
that can be compared to results from the same modelʼs 
contemporary simulations. 
 
2.  VORTEX TRACKING 

General circulation models produce features with 
tropical cyclone-like structures, which can be tracked 
using algorithms developed to identify their defining 
characteristics (e.g Vitart and Stockdale, 2001; 
Camargo et al. 2002). These methods track systems 
when specific model-dependant thermodynamic and 
kinematic variables exceed thresholds. Connecting 
nearby points that exceed one of these thresholds 
identifies model-generated tropical cyclone tracks. 
Should the track last longer than a couple days, it is 
deemed a tropical cyclone. For our analysis, we have 
adopted the Camargo et al. (2002) algorithm, which will 
be briefly summarized below (for a more comprehensive 
overview, see Camargo et al. 2002).  

First, the algorithm searches for regions where the 
amplitude of the relative vorticity exceeds a value of 
positive (negative) 3.5 x 10-5 s-1 in the Northern 
(Southern) Hemisphere. Next, a matrix of grid boxes 
centered on the region where the threshold was 
exceeded is found, and iterated to the next time step (6 
hours in our dataset). The algorithm again searches for 
an exceeded relative vorticity threshold, however only 
within the matrix created previously. Should a region 
where the threshold is exceeded be found be found 



again, the process is repeated and are determined to be 
a segment of a singular tropical cyclone track. In 
addition to the vorticity threshold, other thresholds must 
be exceeded such as the surface wind speed, 
temperature anomaly at three pressure levels (700, 500, 
and 300 hPa), and mean speed. The algorithm 
continues to iterate until one of these criteria is not met, 
and the storm is designated as complete. Upon 
completion of detection of all storms during the time 
period, an assessment of possible duplicate or 
piecewise storms is made. Duplicate storms are 
removed, while storms that are deemed to be parts of a 
single track, are combined. This evaluation makes the 
algorithm more accurate by removing bogus tropical 
cyclones.  

 

Climate Model 
Length 

Model Storms 
Generated 

Pre-Industrial Era 35 years 1775 
Mid-Holocene 32 years 1650 
Last Glacial Maximum 31 years 1344 

Table 1 Vortex detection and tracking algorithm output 
information for three CESM climate simulations 

 Information on the output generated from the vortex 
detection and tracking algorithm is given in Table 1. The 
average number of model storms formed per year for 
the Pre-Industrial Era and Mid-Holocene simulations are 
quite similar (~ 51 storms/year), with lower genesis in 
the LGM simulation (~43 storms/year, owing mostly to 
the much colder climate). TCs are generated in basins 
qualitatively similar to climatology, with the exception of 
the Atlantic Ocean where CESM has a well-known bias 
of generating too few storms. Model resolution affects 
the number of features a given model will produce, with 
coarser runs generally yielding fewer runs than nature.  
Each run considered here has common resolution of ~1º 
by 1º. 
 In an effort to show the value of the tracking 
algorithm, a sample track is shown in Figure 1. For the 
sake of brevity, this track was chosen in order to 
showcase an example of a typical, long-lasting storm.  

 
Figure 1 Sample model track generated from the vortex 
and tracking algorithm. The genesis location (green) and 
track points (blue) are denoted. 

Figure 2 shows how environmental parameters vary 
in the sample track depicted in Figure 1. Variations in 
wind shear and minimum moist static energy relative to 
their climatological means at those locations over the 

lifetime of the storm are given. The stormʼs change in 
strength can be judged by the variations in vorticity and 
sea level pressure. Both show an increase in strength 
until ~Nov. 16 and then begin to diminish in strength. 
While changes in strength are captured with sea level 
pressure, the magnitude of the pressure in this storm 
(along with a large number of those output from the 
vortex tracking algorithm) is quite high as compared to 
what is seen in nature. Wind shear is highly variable, 
with low wind shear at the beginning of the stormʼs 
lifetime (necessary for TC development), and higher 
values for wind shear in the latter part of its lifetime 
(assists in storm dissipation).  

 
Figure 2 Environmental parameters along model 
generated storm track (blue) and climatological mean 
(red). (a) Wind shear magnitude [m/s], (b) minimum moist 
static energy [J/kg], (c) Vorticity [1/s], and sea level 
pressure [hPa]. 

Moist static energy is a combination of the internal, 
latent, and potential energies, given by: 

 

€ 

h = cpT + Lvq + gz     (1) 
 

where cp is the specific heat capacity at constant 
pressure, T is temperature, Lv is the latent heat of 
vaporization, q is the specific humidity, and gz is the 
geopotential height. Large values of h (common in the 
tropics) are indicative of saturated regions, and its value 
decreases (increases) with height from the surface (mid-
troposphere). The parabolic variation of its value with 



height is useful in determining how saturated the mid-
troposphere is since its minimum value will reside there. 
Noting variations in minimum moist static energy along 
the storm track (Figure 2), therefore, is a guide for 
available moisture in the center of the storm. The 
amount of available moisture is largest at the beginning 
of the stormʼs lifetime and decreases steadily after Nov. 
15 concurrent with decreases in both vorticity and sea 
level pressure. Near the end of the stormʼs lifetime, the 
minimum of h has decreased dramatically. Although this 
is a single case study, the environmental parameters do 
a fair job as predictors to changes in storm intensity. 
 
3.  TROPICAL CYCLONE GENESIS FACTORS 

Potential intensity (PI) is the thermodynamic limit to 
the strength of tropical cyclones (TCs). To put more 
simply, it is the speed limit for a tropical cycloneʼs 
maximum surface wind speed. Tropical cyclones require 
a flux of enthalpy k (heat) from the ocean to the 
atmosphere, and a heated marine boundary layer parcel 
can then rise to its level of neutral buoyancy (LNB) 
based on the thermal profile that exists above it.  
Potential intensity is high in regions where convection 
can carry the heated boundary layer parcel to the 
tropopause, and low in regions where the sounding caps 
convection at shallow depths. The difference between 
the sea surface temperature (SST) and temperature at 
the level of neutral buoyancy where convection outflows 
(To) directly affects the value of PI: 
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PI =
Ck

Cd

SST −To
To

k0
* − k( )    (2) 

 
Here Ck and Cd are the exchange coefficients for 
enthalpy and drag, respectively, k0* is the saturation 
enthalpy of the sea surface, and k is the atmospheric 
boundary layer enthalpy. In our analysis, we set the ratio 
of Ck /Cd ratio to be 0.9, which lies within the range of 
values tested by Emanuel (1995). Potential intensity is 
highest in regions of the world where thermal soundings 
permit deep convection, which in the present-day 
atmosphere correlates with regions equatorward of the 
26ºC isotherm.  It is particularly important to note that 
the limiting factor is the depth of the convective layer 
established by the sounding, not the underlying SST; 
thus, in different climates (such as the LGM), the 
correlation between SST thresholds and high potential 
intensity are significantly different than in the modern 
world (see Korty et al. 2012a for further discussion). 

Figure 3 shows the storm season mean of potential 
intensity (averaged JASO in Northern Hemisphere and 
JFMA in Southern Hemisphere). Areas able to sustain 
the most intense tropical cyclones are confined to 
places with high climatologically averaged PI.  While PI 
provides a measure of the potential maximum surface 
wind speed of a TC, it can also be used to assess 
regions of deep convection. Korty et al. (2012a) showed 
the joint distribution of PI and the level of neutral 
buoyancy, which featured a partitioning into two major 

bins: a high frequency of low PI/low-altitude LNB, and 
high PI/high-altitude LNB. This abrupt jump between the 
sets occurs roughly near the 55 m/s value for PI. Similar 
plots generated from the CESM dataset we examine 
here agree with those produced from the ensemble 
models (not shown). Figure # also shows the genesis 
locations of TC-like features followed using the vortex 
tracking and detection algorithm. While not strictly an 
index for TC genesis, the values for the climatological PI 
(and therefore deep convection) are highly correlated 
with the genesis of individual storms. Only 2% of the 
model storms occur at times and in regions with a PI 
value less than 55 m/s. 

 
Figure 3 Storm season mean Potential Intensity (averaged 
JASO in Northern Hemisphere and JFMA in Southern 
Hemisphere) during the Pre-Industrial Era. Values shown 
are in m/s. Asterisks (black) denote genesis locations as 
derived from the vortex detection and tracking algorithm. 

Both observed and modeled storms benefit from 
high levels of mid-tropospheric moisture (e.g. Emanuel 
et al. 2008; Rappin et al. 2010), which aids development 
by shortening the time required for moist convection to 
saturate the column. The ratio of moist entropy deficits 
to surface fluxes of enthalpy has been found to be an 
important non-dimensional parameter (χ) in numerical 
studies of genesis.  The parameter is defined: 
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χ =
sb − sm
s0
* − sb

     (3) 

 
where the subscripts b, m, and 0 are evaluated at the 
boundary layer (in our analysis taken as 925 hPa), mid-
troposphere (600 hPa), and surface, respectively. The 
pseudo moist entropy, s, as calculated in Emanuel 
(1994) is defined as: 
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s = cp ln(T) − Rd ln(P) +
Lvq
T

− Rvqln(H)  (4) 

 
where H is the relative humidity, q is specific humidity, 
and all other symbols have their common meaning. 
Utilizing this variable in the calculation of the mid-
tropospheric moisture deficit is especially useful for our 
analysis of climates that differ from our own, as changes 
in moist entropy will scale temperature. Thus, large 
(small) values for χ are indicative of dry (moist) columns 



of mid-tropospheric air. Figure 4 shows the storm 
season mean of the non-dimensional parameter, χ. A 
large variation in this quantity between the two storm 
seasons is shown, with consistently higher values (i.e. a 
drier mid-troposphere) in the Southern Hemisphere.  

 
Figure 4 As in Figure 3, but for the non-dimensional 
parameter, χ . 

During the Northern Hemisphere storm season, a 
majority (~64%) of the locations of TC genesis fall within 
values χ < 0.625. Contrasting with the Southern 
Hemisphere storm season, a number of TCs are 
generated in regions of larger χ. These regions, having 
larger moisture deficits, would be expected to deter the 
formation of TCs, yet the model storms appear to be 
unaffected by the dry environment. 
 Large magnitudes for wind shear discourage TC 
development and intensification. Here we take the 
magnitude of the wind shear as the magnitude of the 
vector difference between 850 and 300 hPa winds 
(Vshear). While wind shear can have a relatively high 
sensitivity to regional and temporal variations in 
individual storms (as was shown in a previous section), 
its climatological averages are small and show little 
variability throughout much of the tropics, but increase in 
magnitude at higher latitudes. 

 
Figure 5 As in Figure 3, but for wind shear magnitude 
(taken as the magnitude of the vector difference between 
850 and 300 hPa winds). Values shown are in m/s. 

Figure 5 shows the storm season mean of the 
magnitude of wind shear. The majority (~87%) of 
genesis locations occur in regions with relatively low 
wind shear (< 12 m/s). The manner in where these 
storms are generated within low wind shear regions 

follows a pattern qualitatively similar to that within high 
potential intensity regions in Figure 3. While high values 
of Vshear act to deter actual tropical cyclone genesis, a 
large number of successful genesis cases occur in 
regions of high wind shear in the Northern Indian 
Ocean. 

Together, the three genesis factors discussed 
previously PI, χ, and Vshear, along with η (the absolute 
vorticity, which has little zonal variation but increases 
with latitude), make up the components of an empirically 
constructed genesis potential index (GPI). GPI was 
defined by Emanuel (2010) as: 
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GPI =
a min η,4 ×10−5( )[ ]

3
max MPI − 35,0( )[ ]2

χ
4
3 25 +Vshear[ ]4

 (5) 

  
where a is a normalizing coefficient chosen so that the 
area and annual integral of GPI yields 85 storms in the 
present climate. This form of the index (based off of 
work by Emanuel (2010) and updated by Tippett et al. 
(2011) to clip the vorticity dependence) depicts the most 
favorable locations for TC genesis in the present 
climate. It matches the regional and seasonal cycles of 
observed TC genesis, but its utility in other climates is 
unknown. 

 
Figure 6 As in Figure 3, but for Genesis Potential Index. 
Values shown are in # of events m-2 month-1. 

Figure 6 shows the storm season mean GPI with 
genesis locations from the vortex detection and tracking 
algorithm overlaid in black. A large number of the 
genesis points coincide within regions of non-negligible 
GPI values, especially in the Northern Hemisphere 
Pacific Ocean. However, the index does poorly at 
capturing storms in the Indian Ocean during both peak 
storm seasons. (CESM has a well known bias of too few 
storms in the Atlantic.)   

These results suggest that model generated TCs 
are confined to regions of high potential intensity, which 
in the models are those with thermal profiles suitable for 
convection.  Storms form in regions of high and low 
shear, as well as high and low χ within regions of high 
PI.  The genesis index is very low in the Southern Indian 
Ocean owing to low magnitudes of absolute vorticity for 
these latitudes (not shown), but the formation of model 
storms is uninhibited by this background state.  



4. TROPICAL CYCLOGENESIS DURING THE MID-
HOLOCENE 

A key goal of this research is to examine the 
cyclone genesis and the influence of environmental 
parameters on model storm development and 
intensification. Furthermore, however, we wish to study 
how model storms in different climate periods respond 
to environmental factors that depart significantly from 
their modern values. 

The variations of the Earthʼs orbit affect the 
seasonal distribution of solar radiation incident at the top 
of the atmosphere. Precession of the Earthʼs equinoxes 
causes the closest approach to the Sun to rotate around 
the calendar year over an approximately 21,000-year 
cycle. In our current climate, this occurs during early 
January, but during the Mid-Holocene the perihelion 
occurred in mid-September (i.e. the peak of the modern 
Northern Hemisphere hurricane season). 

 
Figure 7 Seasonal tropical cyclone genesis in the Northern 
Hemisphere during the Pre-Industrial Era (blue) and 
Mid-Holocene (green) time periods. Values shown are in # 
of storms. 

Figure 7 shows the seasonal tropical cyclone 
genesis of storms found using the vortex tracking and 
detection algorithm in the Northern Hemisphere. The 
sensitivity of storm genesis to the distribution of 
incoming solar radiation is recognized in the seasonal 
shift of peak hurricane season. Northern Hemisphere 
peak hurricane season, occurring approximately from 
July–October in our present climate, is shifted to 
September–December in the simulations of the Mid-
Holocene. A delayed response in sea surface 
temperature (SST) to insolation causes warmer water 
temperatures in months later in the year than in present, 
while the atmosphere responds quickly to the increased 
radiation during summer. The ocean is relatively cool 
compared to the atmosphere during summer, but 
relatively warm during autumn, resulting in a shift in the 
seasonal cycle of potential intensity and other genesis 
factors, which mirror the shift in events generated by the 
general circulation model.  Despite the large changes in 
individual months, the effects compensate between 

summer and fall, resulting in annual totals that are 
similar to those of the Pre-Industrial Era control. 

Figure 8 shows the genesis factors as plotted in 
Figures 3–5, but for the Mid-Holocene, which depicts 
genesis locations occurring in a similar basin distribution 
as for the Pre-Industrial Era. Figure 8a shows the storm 
season mean PI as in Figure 3, which shows very 
similar results as in the Pre-Industrial Era. Likewise, 
values of climatological PI are highly correlated with the 
genesis of individual storms (<3% of the model storms 
occur at times and in regions with a PI value less than 
55 m/s). 

 (a) 

 
(b) 

 
(c) 

 
 
Figure 8 As in Figures 3-5, but for the Mid-Holocene.  

Spatial distributions of the values for χ (Figure 8b), 
are quite similar as well during the Northern Hemisphere 
storm season, while having large variations in the 
Southern Hemisphere when compared with Figure 4. 
Values there are decreased in variety of regions (e.g. 
South Indian and Western South Pacific basins), which 
now encompass a larger amount of genesis points (76% 
of genesis occur in regions where χ < 0.625). Wind 
shear (Figure 8c) as well, shows a qualitatively similar 
structure as the Pre-Industrial Era (Figure 5) with 
localized regions (e.g. Central South Pacific basin) 
having slightly higher values of Vshear. Values for Vshear < 



12 m/s encompass a smaller subset of genesis 
locations (~81%).  

 
5. TROPICAL CYCLOGENESIS DURING THE LAST 
GLACIAL MAXIMUM 

Simulations of the Last Glacial Maximum provide an 
interesting study, as the orbital variations during that 
period are very similar to the present day, while global 
temperatures are much colder.  The total number of 
model-generated storms under this climate simulation 
(Table 1) are reduced when compared with those for the 
Pre-Industrial and Mid-Holocene. However, the structure 
of the seasonal tropical cyclogenesis (not shown) is 
similar to that found for the Pre-Industrial simulation 
(Figure 7). Because the potential intensity of a tropical 
cyclone is dependent on profiles supportive of deep 
convection, as opposed to the value of SST, tropical 
cyclones are able to exist during this period despite 
colder SST. The structure of storm season mean PI is 
similar with the previously presented simulations, albeit 
with slightly decreased intensities in a few regions. 
However, <3% of the model storms occur at times and 
in regions with a PI value less than 55 m/s, as was seen 
for the previous 2 simulations. Storm season mean 
values of χ, are similar in structure but have decreased 
values throughout a number of regions (e.g. Central 
Pacific, Northern Indian, and Atlantic Oceans) when 
compared with the Pre-Industrial. This simulation also 
encompasses the most (87%) of the genesis locations 
within regions having values for χ < 0.625. The structure 
of storm season mean Vshear is qualitatively similar to 
Mid-Holocene simulations, while including 88% of the 
genesis locations within regions having Vshear < 12 m/s. 

 
6.  CONCLUSIONS AND FUTURE WORK 

We examine how environmental parameters can 
act as large-scale predictors of tropical cyclones in three 
different climate simulations by utilizing a detection and 
tracking vortex algorithm. The model-generated storms 
exhibit quasi-realistic features that respond well to 
changes in parameters that both inhibit and advance 
tropical cyclone growth.  Genesis factors are useful 
indicators of locating regions of potential storm 
development. Regions of high potential intensity 
facilitate deep convection and storm development, even 
within regions having large values for χ and high wind 
shear.  

We are in the process of relating the modeled 
storms with genesis factors that vary spatially and 
temporally with the storm track. In addition, we look to 
examine the relationship between the genesis factors 
provided (as well as γ, an index for the ventilation of the 
storm) with downscaled tropical cyclone climatologies.  
We also plan to perform a similar analysis with 
downscaled storms, including those generated using 
Emanuelʼs seeding technique. 
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