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1. INTRODUCTION 
Although

1
 the skill of operational tropical 

cyclone (TC) track forecasts have increased 
considerably over the last twenty years in the 
Eastern Pacific and Atlantic basins, intensity 
forecasts have only shown mild improvement in 
the eastern Pacific Basin and, depending on the 
forecast time, little improvement to worsening in 
the Atlantic basin (Cangialosi and Franklin 
2013). TC intensity forecast performance can 
also differ considerably between models, years, 
and storms. The lack of quality and consistency 
decreases the value of TC intensity forecasts 
and demands attention from the scientific 
community. One approach to increasing the 
value of TC intensity forecasts with the 
resources currently available is to create real-
time error predictions that help forecasters and 
end users know whether a particular model 
forecast will be more or less skillful than 
average. This a priori expectation of forecast 
performance would combat the adverse effects 
of the substantial day-to-day and storm-to-storm 
fluctuations in forecast quality.  

As a first step towards quantifying the 
expected intensity forecast error of a TC, Bhatia 
and Nolan (2013, hereafter BN13) studied the 
relationship between synoptic parameters, TC 
attributes, and forecast error. This study 
represented one of the first attempts to 
understand how TC intensity forecast 
performance is connected to these storm-
specific characteristics. Model performance was 
binned according to these defining features, and 
t tests were used to measure the robustness of 
the results. The statistical significance 
established between bins conveyed that there is 
evidence that forecast error is often related to 
the nature of the particular storm and 
surrounding atmospheric environment. Based on 
these conclusions, it seems likely that variables 
capturing a tropical cyclone’s environment can 
be used to skillfully predict intensity forecast 
error. 
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Since then, the authors have found that 
parameters representing initial condition error 
and atmospheric stability (“proxies”) are also 
linked to forecast error. These empirically-
derived proxies along with the synoptic variables 
are used to predict tropical cyclone intensity 
forecast error.  

2. DATA AND METHODOLOGY 

In BN13, the situation-dependent 
performance of the Logistic Growth Equation 
Model (LGEM), Decay Version of the Statistical 
Hurricane Intensity Prediction Scheme (DSHP), 
Geophysical Fluid Dynamics Laboratory 
hurricane model (GFDL), and the National 
Hurricane Center’s official (OFCL) forecast were 
evaluated at 24, 48, and 72 hours by computing 
the mean absolute error (MAE), bias, and 
percent skill (PS). BN13 focused on the five 
Atlantic basin hurricane seasons between 2006 
and 2010. For this study, the results have been 
expanded to include 96- and 120-hour forecasts, 
the Hurricane Weather Research and 
Forecasting (HWRF), GHMI, and HWFI models, 
and the 2011 and 2012 hurricane seasons. 
GHMI and HWFI represent the “early” versions 
of the HWRF and GFDL models, which are 
created by interpolating the version of HWRF 
and GFDL from the previous forecast. The 
intensity forecasts for all models are located in 
the National Oceanographic and Atmospheric 
Administration’s (NOAA) Automated Tropical 
Cyclone Forecast (ATCF) “a-deck” files. The 
forecasts are verified with National Hurricane 
Center (NHC) best-track data. 

The focus of this study moves away from 
analysis of model performance and towards the 
prediction of forecast error. As a result, only the 
early models, DSHP, LGEM, HWFI, and GHMI 
are considered because these forecasts are 
produced at synoptic times. The dynamical 
predictors used for these predictions include 
initial and forecast intensity and initial and 
forecast average (e.g., the forecast average 
shear of a 24-hour forecast is the average of 
initial shear and each 6-hourly forecasted shear 
until 24 hours): potential intensity, storm speed, 
850-200 hPa wind shear magnitude, 850-200 
hPa wind shear direction, longitude, latitude, 850 



 
 

hPa vorticity, 200 hPa divergence, 700-500 hPa 
relative humidity, and distance to land. The 
predictor values are   computed using output 
from the National Centers for Environmental 
Prediction’s (NCEP) Global Forecast System 
(GFS) and are available in the stext (SHIPS) 
files

*
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To supplement the synoptic predictors, 
proxies for atmospheric stability and initial 
condition error were also computed. The proxies 
for atmospheric stability include the forecasted 
intensity change during the forecast period, 
deviation of each model’s intensity forecast from 
the mean of all the models (deviation from 
ensemble mean: DFEM), the standard deviation 
of the intensity forecasts (spread), and the 
spread of the track forecasts. The only proxies 
for initial condition error considered were the 
previous 12-hour intensity change and the error 
of the previous 12-hour forecast that verifies at 
the time when the error prediction is made.  

In a manner similar to the development of 
SHIPS (DeMaria and Kaplan 1994), standard 
multiple linear regression models were created 
from the twenty-nine dynamical parameters and 
proxies to predict the absolute error (AE) of the 
different tropical cyclone intensity models. The 
2007-2011 Atlantic basin hurricane seasons 
served as the training period for the regression 
and the 2012 season was used as the 
independent verification period. Predictions of 
the AE were created for 24- through 120-hour 
intensity forecasts (with 24 hour increments). 
The model development sample excluded low 
pressure systems (“LO” in ATCF files), 
extratropical storms (“EX” in ATCF files), and 
storms that pass over land during the forecast 
period. As mentioned by DeMaria and Kaplan 
(1994), statistical properties of storms that are 
over land are different from the properties of 
storms over the ocean, so training the 
regression formula using both cases is not 
physically justified. 

The standard multiple regression techniques 
that were used to develop the SHIPS model 
were followed here. Dependent and independent 
variables are normalized so the regression 
coefficients for different variables, forecast 
intervals, and forecast hours can be compared. 
A backward stepping stepwise regression 
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Files are available at ftp://rammftp.cira.colostate. 

edu/demaria/SHIPS/stext_oper/. 

procedure was used to select the predictors. 
The regression equation starts with all of the 
predictors and then the least significant predictor 
is removed. This process is repeated until the 
weighting coefficients associated with the 
predictors are all different from 0 at the 95% 
confidence level (F-statistic used). The 
preliminary results revealed that some predictors 
were never found to be significant or if found 
significant, were associated with physically 
unjustifiable coefficients. As a result, distance to 
land, longitude, previous 12-hour intensity 
change, and previous 12-hour intensity error 
were excluded. 

Additionally, adjustments to predictors were 
made before making our error predictions. Initial 
and forecast latitude squared was added as a 
predictor because AE exhibited a nonlinear 
relationship when transitioning from lower to 
higher latitudes throughout the models. Storms 
at lower latitudes had much higher AEs in all the 
models. Additionally, sine of shear direction 
replaced shear direction as a predictor to avoid 
the illusion that shear pointing from 359 degrees 
is significantly different from shear pointing from 
1 degree. With these changes, there were 24 
independent variables that were inputted into the 
multiple linear regression formula.    

3. RESULTS 

For each of the four models and five 
forecast times, stepwise linear regression was 
carried out using the 24 synoptic variables and 
proxies to predict AE during the 2012 Atlantic 
basin hurricane season. The percent variance of 
intensity forecast AE that could be explained for 
the different models ranged from 0-4% for 24-
hour forecasts, 2-9% for 48-hour forecasts, 4-
13% for 72-hour forecasts, 4-18% for 96-hour 
forecasts, and 2-31% for 120-hour forecasts. 
The exact R^2 values for each of the models 
and forecast times are included in Table 1. 
Table 1 shows that the percent variance 
explained is larger for longer forecast periods. 
This trend is likely due to two reasons. First, the 
intensity values in the best-track database are 
rounded to 5-knot increments; this value 
represents about 33%-50% of the average 
forecast error for short-range forecasts. Shorter 
forecasts of AE are likely affected by this noise 
(DeMaria and Kaplan 1994). Secondly, the 
variance in the true AE is much larger for longer 
forecast intervals, which can lead to higher R

2 

values. 



 
 

 

Table 1. R
2
 between predicted AE and true AE for DSHP, LGEM, HWFI, and GHMI at each forecast 

period for intensity forecasts in the Atlantic basin (2012 hurricane season).

For the GHMI and HWFI models, DFEM is 
consistently the leading predictor. This predictor 
has a weighting coefficient that is different from 
zero at the 99% significance level for both 
models at every forecast time. These results 
were expected based on DFEM’s relationship 
with AE for the 2007-2011 hurricane seasons. 
During these seasons, the correlation between 
DFEM and AE for the GHMI and HWFI model 
ranged from 0.23-0.50 and 0.27-0.46 
respectively (depending on the forecast period). 
However, this predictor might be weighted too 
heavily when being applied to independent data 
because HWFI and GHMI show low R

2
 values 

for the 2012 AE predictions. This trend can be 
explained by HWFI and GHMI completing 
effective model updates that improved the 
models more than the statistical models 
(Cangialosi and Franklin 2013). As a result, 
these dynamical models often achieve lower AE 
in 2012 compared to 2007-2011 so that 
deviations from the ensemble mean likely 
indicate they are identifying a more accurate 
intensity change than the statistical models. If 
this is the case, deviating from the ensemble 
mean would lead to lower errors and the high 
positive correlations with AE would not be 
justified.  

The statistical models, LGEM and DSHP, 
generally yield higher R

2 
values. This result 

could be a byproduct of the more consistent 
model formulations throughout the training and 
verification period or the fact that GFS output is 
also used to train these models. For LGEM, 
forecast average divergence and DFEM were 
the leading predictors. Both of these predictors 

had weighting coefficients that are different from 
zero at the 99% significance level for four out of 
the five forecast times. For DSHP, forecast 
intensity and intensity forecast spread were the 
leading predictors. Both of these predictors also 
had weighting coefficients that are different from 
zero at the 99% significance level for four out of 
the five forecast times.   

To better understand the varying levels of 
success between the different models and 
forecast times, two model-forecast hour 
combinations are selected for further analysis: 
120-hour LGEM and 24-hour GHMI. 

3.1 120-HOUR LGEM ERROR PREDICTIONS 

The 120-hour LGEM AE predictions 
achieved the highest R

2
 among all model-

forecast hour pairs. Figure 1 shows a scatter 
plot displaying the relationship between LGEM 
AE and predicted error for 120-hour forecasts. 
The corresponding regression equation is 
included below: 

Absolute Error = -0.21 X (0 hour Intensity) + 
0.16 X (0 hour Shear) + 0.17 X (0 hour Shear 
Direction) + 1.58 X (0 hour Latitude) – 1.09 X (0 
hour Latitude

2
) + 0.28 X (0 hour Divergence) – 

0.30 X (0 hour Storm Speed) - 0.54 X (0 hour 
Relative Humidity) - 0.80 X (Forecast Average 
Latitude) - 0.25 X (Forecast Average 
Divergence) + 0.23 X (Forecast Average Storm 
Speed) + 0.40 X (Forecast Average Relative 
Humidity)             (1) 

The training dataset consists of 318 verified 
forecasts and the testing dataset consists of 91 



 
 

FIG. 1. Observed AE for 2012 120-hour LGEM forecasts as a function of predicted AE derived from 
multiple linear regression of the 2007-2011 data. The dashed line indicates the least squares regression 
line, and the R value of the line is included in the top right corner of the figure. 
 
verified forecasts. Each ‘x’ in Figure 1 
represents one verified forecast where the 
dependent variable is the true AE and the 
independent variable is the predicted AE using 
regression equation (1). The dashed line 
represents the least squares regression line of 
the data. 
 

Even though the predicted AE appears to fit 
the true AE well, all the coefficient weights in 
equation (1) do not follow physical reasoning. 
The regression technique identified twelve 
predictors as statistically significant but three of 
these variables involve latitude, two involve 
divergence, two involve storm speed, and two 
involve relative humidity. More importantly, the 
predictor coefficients for these cases have 
opposite signs but in reality, do not have inverse 
relationships with forecast error. This 
inconsistency is compensated for in equation 1, 
because the larger weighting coefficient(s) of the 
pair (or three) is consistent with the correlations 
observed during the training dataset. For 
example, the coefficient for 0 hour storm speed 
is a larger negative value than the positive 
coefficient for forecast storm speed. During the 
training dataset, LGEM AE has a negative 
correlation with both 0 hour and forecast 

average storm speed. Ideally, the regression 
technique should select only the more significant 
predictor from the forecast average and initial 
value or include both with the correct sign.  

This error is an artifact of the regression 
overfitting the results based on the multiple 
predictors involving the same dynamical 
variable. For the regression to perform the best 
on an independent dataset, the coefficients need 
to have physically justified magnitudes and 
signs. Regardless, the R

2
 for the error 

predictions in Figure 1 is 0.31 which indicates 
this method has promise in an operational 
setting. 

3.2 24-HOUR GHMI ERROR PREDICTIONS 

The 24-hour GHMI AE predictions achieved 
the lowest R

2
 among all model, forecast hour 

pairs. Figure 2 shows a similar scatter plot to 
Figure 1 except it displays the relationship 
between GHMI AE and predicted AE for 24-hour 
forecasts. The regression equation used to 
predict AE is included below: 

Absolute Error = 0.15 X (Forecast Intensity) – 
0.12 X (Forecast Latitude

2
) + 0.22 X (Forecast 

Intensity Spread) + 0.1 X (DFEM)                    (2)  



 
 

 

FIG. 2. Observed AE for 2012 24-hour GHMI forecasts as a function of predicted AE derived from multiple 
linear regression of the 2007-2011 data. The dashed line indicates the least squares regression line, and 
the R value of the line is included in the top right corner of the figure. 

For this shorter forecast period, the datasets 
are much larger with a training dataset of 967 
verified forecasts and a testing dataset of 307 
verified forecasts. Clearly, for this model-
forecast time pair, predicted AE does not explain 
the variance of true AE well. A possible 
explanation for this lower R

2
 can be made by 

revisiting two already mentioned points. The 
noise in the data from the rounding of the best-
track data adds some systematic error to short-
range AE predictions. Secondly, the GFDL 
model received significant upgrades in 2012 as 
well some smaller upgrades throughout the 
training period (Bender 2012).  Since GHMI is 
derived from GFDL, it has been affected by the 
same model upgrades as the parent model. The 
effects of these changes to the model are 
apparent when comparing the regression 
formula (not shown) obtained using the 2012 
season as the training period instead of 2007-
2011. The 2012 regression formula for 24-hour 
GHMI error predictions only has two of the same 
significant predictor variables, forecast intensity 
and DFEM, along with six new predictors. 
Clearly, GHMI AE is exhibiting different trends in 
the training and verification period.  

Adding more skillful predictors that equally 
applicable to the training period and verification 

period might be difficult for the models when 
upgrades are made. Finding predictors less 
affected by model upgrades or adjusting the 
training period length (picking a training period 
where the dynamical model is similar to the 
verification period dynamical model) will be 
necessary to improve the R

2
 values moving 

forward.   

4. SUMMARY AND FUTURE WORK 

A combination of dynamical, atmospheric 
instability, and initial condition uncertainty 
parameters were used as the independent 
variables in multiple linear regression formulas 
to predict TC intensity forecast AE. The percent 
variance of the GHMI, HWFI, LGEM, and DSHP 
intensity forecast AE that could be explained for 
the 2012 Atlantic season ranged from 0% to 
31%. More methodical testing and careful 
analysis is necessary to select a list of the most 
physically justified predictors before finalizing a 
list of independent variables to be inputted into 
an operational multiple linear regression 
formula.  

R
2
 values can potentially be improved for all 

forecast models and hours because currently all 
dynamical variables besides latitude are 



 
 

assumed to have a linear relationship with 
forecast error. A linear fit is not ideal for some of 
the synoptic predictors. For example, BN13 
found that medium shear values have high AE 
while low and high shear values have lower AE; 
this trend is not described with a linear function.  

It might be worthwhile to test additional 
dependent variables in the regression model as 
past studies have showed the benefits of using 
AAC and RMSE instead of AE (see review by 
Ehrendorfer 1997). In addition, probabilistic error 
forecasts will be added to the deterministic 
forecasts based on the selected predictors.  
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