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1. INTRODUCTION 
 

Over the past few decades, predicting track and 
intensity fluctuations of North Atlantic tropical cyclones 
(TCs) has been a major emphasis for operational 
forecasters and atmospheric researchers alike. Both 
track and intensity metrics are definitively connected to 
the risks of a tropical cyclone, as maximum wind speed 
(Vmax) is related to the maximum potential 
destructiveness of a storm’s wind field (e.g. Emanuel 
2005), and storm position is used to identify the regions 
at risk of experiencing the storm.  

Despite the inherent usefulness of track and 
intensity metrics, they do not yield information on the 
size or overall strength of TCs. Over the past few 
Atlantic hurricane seasons, several notable landfalling 
TCs have produced more damage than otherwise would 
have been expected by a storm of its intensity. 
Hurricanes Ike (2008) and Irene (2011) both produced 
in excess of $15 billion in damage across the United 
States as noted by the National Hurricane Center’s 
(NHC) tropical cyclone reports despite being rated as 
category two and category one storms respectfully at 
time of landfall on the Saffir Simpson Hurricane Wind 
Scale (SSHWS). More recently, Sandy (2012) only had 
a Vmax of 70 knots when it made landfall as an 
extraordinarily large post-tropical storm, yet it caused in 
excess of $50 billion in total damage as per the NHC TC 
report. As a result of these recent damaging storms and 
those from the record-setting 2005 Atlantic Hurricane 
Season (i.e. Hurricane Katrina), some researchers have 
questioned whether or not intensity metrics such as 
maximum sustained winds, are best suited to 
communicate the risks of TCs (Kantha 2006). 

Hurricanes Ike, Irene, and Sandy were all very 
large storms despite their weaker intensities. Therefore, 
it is distinctly possible that Vmax is not significantly tied to 
damage potential in larger storms. Irish et al. (2008) 
found that storm size is significantly correlated to storm 
surge in Atlantic Hurricanes and recommended that 
while intensity scales adequately categorize wind 
damage, storm size must be considered to adequately 
categorize damage from flooding.     

Consequently, new scales and metrics have 
emerged as a complement to the SSHWS that are more 
closely tied to the overall kinetic energy of tropical 
storms (Powell and Reinhold 2007; Maclay et al. 2008).  
Integrated kinetic energy (IKE) is one such metric that is 
calculated by accumulating one-half of the surface wind 
field squared (U

2
) times the density (ρ) per unit volume 
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over the entire volume domain of a tropical cyclone 
(Powell and Reinhold 2007), or more specifically, 

             
 

 
     

 

   

Importantly, unlike maximum sustained wind 
metrics, IKE responds to changes in the overall size, 
strength, and intensity of a TC. Therefore, IKE and other 
similar kinetic energy metrics are hypothesized to 
correspond well to the destructive potential of TCs, 
particularly with regards to storm surge damage.  

For example, Hurricanes Ike, Irene, and Sandy at 
their respective times of landfall in the United States had 
extremely high IKE values, despite their low intensities 
(Figure 1). Sandy, in particular reached a lifetime 
maximum of over 400 TJs of IKE just prior to landfall, 
giving it the second highest maximum IKE value in any 
Atlantic TC since 1990. Therefore, it is distinctly 
possible that forecasting IKE, as a complement to 
existing intensity metrics, could help to better assess the 
risks of landfalling Atlantic TCs, particularly for larger 
and less intense storms such as these examples. 

Despite the potential usefulness of real-time IKE 
updates, there are limited resources currently available 
to forecasters that are specifically designed to assess 
the kinetic energy of a tropical cyclone. Therefore, we 
present a statistical model, named Statistical Prediction 
of Integrated Kinetic Energy (SPIKE), which can be 
used in real time for forecasting IKE fluctuations in North 
Atlantic TCs. Much like the operational Statistical 
Hurricane Intensity Prediction Scheme (SHIPS) used for 
forecasting Vmax (DeMaria and Kaplan 1994;1999; 
DeMaria et al. 2005), SPIKE utilizes a multivariate linear 
regression model trained on a blend of environmental 
and internal storm-driven predictors, in addition to 
observed persistence metrics, to predict changes of IKE 
out to three days in the future. 

 
2. DATA 

 
2.1 Historical Integrated Kinetic Energy Record 

 

In order to calibrate a statistical regression model 
for IKE, it is first necessary to obtain a historical record 
of IKE that can be used as the calibration model’s 
dependent variable. In the absence of continuous wind 
field analyses, IKE can be estimated through a stepwise 
relationship with operational 34-knot, 50-knot, and 64-
knot wind radii, the radius of maximum wind (RMW), 
and Vmax, as detailed by Powell and Reinhold (2007). 
Therefore, the operational wind radii from the extended 
best track dataset (Demuth et al. 2006) are utilized to 
create a six-hourly record of IKE values for all North 
Atlantic TCs of tropical storm force intensity and greater 
over a twenty-two year training interval between 1990 
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and 2011. The resulting IKE values in the historical 
dataset specifically measure the integrated kinetic 
energy only over the portion of the wind field where the 
wind speeds are of tropical storm force or greater (U > 
18ms

-1
). This specific IKE quantity is selected because it 

is hypothesized to be closely related to storm surge 
damage potential by Powell and Reinhold (2007). 

It should be noted that the historical wind radii 
dataset used to calculate historical IKE values is subject 
to year-to-year and storm-to-storm inconsistencies, as 
the accuracy of the historical wind radii is limited to the 
data available in the operational or post-storm analyses. 
Therefore, the historical IKE dataset could be subject to 
the same inconsistencies of data quality and quantity 
that is evident within the wind radii data in the extended 
best track data (Misra et al. 2013). 

The relative frequency distribution of the six-hourly 
historical IKE data is shown in Figure 1. There are 5498 
six-hourly IKE values included in our historical dataset 
from 1990 to 2011 (one IKE value for each six-hourly 
TC  fix), and it is evident that Atlantic TCs most often 
have IKE values that do not exceed 25 TeraJoules (TJ). 
The mean IKE value in the dataset is 34.9 TJ, and the 
standard deviation is 43.0 TJ. In rare instances, TCs 
can briefly obtain IKE values greater than 300 TJ, 
typically near the end of their lifecycle. 

 
2.2 Potential Model Predictors 

 
In addition to the historical record of IKE, a pool of 

potential predictors must also be created to establish 
the relationships that will govern the statistical model. 
These predictors are carefully selected based on some 
of the understood relationships between a storm’s 
environment and the factors that govern the size 
strength, intensity, and ultimately kinetic energy of a TC 
(e.g. Gray 1968; McBride 1995; Hill et al. 2009; Maclay 
2008; Musgrave et al. 2012).  

These environmental, storm-specific, and 
persistence predictors are gathered from a combination 
of the NHC best track data set (Jarvinen, 1984) and the 
SHIPS developmental data set (DeMaria and Kaplan 
1999). The variables derived from the extended NHC 
best track data are storm-specific predictors, such as 
date, position, duration, intensity, and translational 
storm motion. The environmental variables, which 
encompass thermodynamic, dynamic, and moisture 
related fields known to affect TC behavior, are taken 
from the aforementioned SHIPS developmental dataset 
(DeMaria and Kaplan 1999). In all, thirty-one predictors 
were considered for this regression exercise.  

It should be noted that the SHIPS developmental 
dataset, from which the environmental data is obtained, 
is not a forecast, and instead it utilizes analyses and 
reanalyses from the National Centers for Environmental 
Prediction (NCEP) to provide estimates for the observed 
environmental conditions experienced by each storm 
from genesis to dissipation. An operational real-time 
version of SPIKE will obviously require the predictors to 
be forecasted by numerical models, since the analyses 
and reanalyses are not available for future time steps in 
a real-time operational setting. Therefore, the SPIKE 

models discussed for the remainder of Sections 3-5, all 
of which utilize observations and SHIPS developmental 
data, are not meant to be forecasts or even hindcasts. 
Instead these regression models will provide an 
estimate for the maximum potential skill of SPIKE in the 
idealistic scenario that the forecasted predictors exactly 
match the future observations.  

 
3. REGRESSION METHODOLOGY 

 

The distribution of historical six-hourly IKE values is 
decidedly non-Gaussian as shown in Figure 1. In fact, 
the six-hourly total IKE values are approximately log-
normally distributed, which is similar to the distribution of 
storm size as measured by the radii of vanishing winds 
(Dean et al. 2009). Therefore, it would be inappropriate 
to use linear regression to model total kinetic energy 
values. Instead, SPIKE will seek to predict changes in 
IKE for twelve evenly-spaced time intervals from six 
hours to seventy-two hours (6hrs,12hrs, … , 72hrs). 
Ultimately, these IKE changes are more normally 
distributed and thus, it becomes more appropriate to 
use multivariate linear regression. However, in order to 
create a model for each of these twelve forecast 
intervals, SPIKE regression models must be calibrated 
and validated separately for each forecast interval. 

Based on the success of the statistical SHIPS 
model used to predict intensity change, we utilize similar 
regression methodology to construct our SPIKE model 
for IKE changes. As done by DeMaria and Kaplan 
(1994), both the dependent and independent variables 
are normalized prior to training the regression model. As 
DeMaria and Kaplan noted, normalizing the predictors 
allows for a comparison between coefficients for various 
predictors and forecast hours (1994).  

To avoid over fitting in our SPIKE regression model, 
predictor screening must be utilized. Once again, we 
follow the lead of DeMaria and Kaplan’s SHIPS model 
(1994, 1999), by using backwards screening. Backward 
predictor screening is done here by training the model 
upon all of the predictors for each forecast interval, and 
then repeatedly removing the single predictor with the 
least significant regression coefficient one at a time, 
until all of the remaining regression coefficients are 
significant at the p=0.01 level. Ultimately, this backward 
screening methodology retains a smaller subset of 
predictors that are used in the SPIKE model for each 
forecast interval. To make the SPIKE prediction model 
as uniform as possible across the forecast intervals, the 
same predictors are chosen for all intervals. These 
predictors are selected if their coefficients are significant 
at the 99% level for at least half of the forecast intervals. 
As a result, predictors may be used on intervals when 
their coefficients are not significant, but as pointed out 
by DeMaria and Kaplan (1994), when a predictor is not 
significant, its coefficient goes to zero and its influence 
on the regression model is diminished. 

 
4. RESULTS 

 

This section presents the results of the SPIKE 
regression model. In addition to estimating fluctuations 



of IKE, SPIKE will also be adapted to estimate total IKE 
by incorporating persistence values of kinetic energy. 
Finally, the predictive skill of SPIKE is evaluated in a 
standard bootstrapping exercise. An emphasis will be 
made in interpreting the physical relationships that drive 
the regression model in the first section, because a 
statistical relationship is meaningless without an 
understanding of the underlying physical processes. 

 
4.1 Physical Interpretation of Selected Predictors 

 

The predictors retained through the backward 
screening exercise are shown in Table 1. These 
predictors encompass a wide array of variables ranging 
from thermodynamical fields such as the depth of the 
26°C isotherm to positional variables such as latitude, 
dynamical values like upper-level divergence, and 
persistence variables such as past values of IKE. For 
the sake of simplicity, the variables are referenced as 
they are abbreviated in Table 1 for the rest of this 
discussion.  

The coefficients for these variables at selected 
forecast intervals are shown in Table 2. Encouragingly, 
the sign of most of the predictors’ coefficients do not 
vary with forecast hour. For example, the coefficient for 
PIKE is negative in all intervals suggesting that storms 
with higher IKE are more likely to have decreasing IKE 
over time. As seen in the distribution of historical IKE 
values, TCs most often have low values of IKE; 
therefore it is not terribly surprising that higher IKE 
storms typically weaken. The physical reasoning behind 
this relationship is tied to the timing of maximum IKE 
during a TC lifecycle. As found by Musgrave et al. 
(2012), TCs often exhibit storm growth (increasing IKE) 
through most of their lifecycle. As a result TCs often 
have their highest levels of IKE late in their lifecycle, 
either prior to landfall or during extratropical transition 
(ET) when TCs often undergo wind field expansion as 
the RMW moves outward and the outer wind field 
accelerates (Evans and Hart 2008).  Obviously following 
landfall or the completion of ET, TCs typically weaken 
drastically over the hostile environments of land or the 
cold northern Atlantic Ocean. Therefore, the negative 
coefficient of PIKE can be attributed to the negative IKE 
change of these strong storms, and the fact that weaker 
storms near genesis typically will gain IKE as they 
become more mature, providing the environment is not 
too unfavorable. Similar to PIKE, PDAY has negative 
coefficients for all forecast intervals. The negative 
coefficient is tied to the fact that TCs are more likely to 
have periods of increasing IKE close to the peak of the 
season (small PDAY), when conditions are typically 
most favorable for TC development.  

The only predictor to have a coefficient that 
changes sign with forecast hour is dIKE12, wherein the 
coefficient is positive in the shorter forecast intervals 
and slightly negative in the longer intervals. The positive  
dIKE12 coefficients in the first several forecast intervals 
makes sense, as storms typically continue to have 
increasing IKE in most phases of their lifecycle 
(Musgrave et al. 2012), wherein a growing storm will 
continue to grow provided the environment remains 

somewhat favorable.  Likewise, if a storm is in an 
environment unfavorable for IKE growth, the kinetic 
energy will likely continue to drop, at least in the short 
term. The slightly negative sign for the longer forecast 
intervals is more difficult to reason physically, but it 
should be noted that the coefficient is not significant to 
begin with, suggesting that past 12hr IKE change is only 
helpful for determining upcoming IKE changes in the 
immediate future. 

In terms of the environmental predictors, some of 
the underlying physical relationships are immediately 
apparent. For example, the coefficients for VORT and 
D200 are positive, suggesting a direct relationship 
between storm growth and each field. In this case, both 
low-level vorticity and upper-level divergence are well 
known conditions that are generally favorable for large 
scale organized convection and the formation and 
development of TCs (e.g. McBride 1995). Similarly, the 
negative coefficients for MSLP and PENV are expected, 
as a more intense storm and/or a storm with a larger 
area of low pressure will typically have higher wind 
speeds and increased IKE with all else being equal. 
Likewise, the positive coefficients for RD26 are 
unsurprising, as TCs induce turbulent mixing and 
upwelling in the upper levels of the ocean which cools 
SSTs through the entrainment of cooler subsurface 
waters (e.g. Price 1981). This SST cooling mechanism 
plays a significant role of slowing down TC growth and 
intensification, especially for slower moving storms over 
shallow oceanic mixed layers (Schade and Emanuel 
1999). Thus, an environment with a deeper thermocline, 
and a higher RD26, is more resistant to the negative 
SST feedback mechanism, making storm growth more 
favorable. 

On the other hand, some of the physical 
relationships that drive the regression coefficients are 
less apparent. For example, the positive coefficients for 
SHRD and LAT seem somewhat counterintuitive to 
conventional TC development theories, wherein TCs 
favor low shear environments as well as warmer oceans 
which are typically found in the lower latitudes. 
However, as discovered by Maclay et al. (2008), TC 
growth can also be tied to external forcing from trough 
interactions and baroclinic environments over the higher 
latitudes. The positive coefficients for REFC for example 
reflect the positive influence of trough interactions on 
storm growth (Maclay et al. 2008; DeMaria et al. 1993). 
The positive coefficients of LAT and SHRD can also be 
related to ET. Extratropical transition occurs in the more 
sheared higher latitudes of the basin, and thus a wind 
field expansion from ET and the subsequent increase in 
IKE over the higher latitudes is likely influencing the 
signs of these coefficients. The coefficients for DTL also 
may seem counterintuitive as a storm over or near land 
will obviously weaken. However, TCs have lower IKE 
near genesis and become more mature later in their 
lifecycle, typically as they approach landmasses. Finally, 
the negative coefficients for RHLO are particularly 
counterintuitive because in most cases increased low 
level humidity is favorable for TC development and also 
for increased storm size (e.g. Hill and Lackmann 2009). 
However, this apparent contradiction can be explained 



going back to the relationship between increasing IKE 
and extratropical transition, whereas storms undergoing 
ET often have an intrusion of dry air into the storm 
circulation (Jones et al. 2003), thus decreasing RHLO. 
Therefore, it is possible that lower RHLO could be 
associated with expanding wind fields in ET or other 
similar events, but additional study of this physical 
relationship is clearly warranted. 

 
4.2 Model Skill and Validation Tests 

 

The shared variance between the SPIKE model 
and IKE variability is shown for selected forecast 
intervals in Table 2. As is the case with SHIPS (DeMaria 
and Kaplan 1994), the explained variance increases 
with increasing forecast hour. At first, this appears 
counterintuitive as forecast skill typically decreases with 
lead time. However, the average magnitude of IKE 
change from 1990 to 2011 is much smaller in the 
shorter forecast intervals than in the larger forecast 
intervals (9 TJ for 12hr; 32 TJ for 72hr). Considering the 
errors and biases within the historical archive of 
operational wind radii, the calculations for observed IKE 
likely have errors greater than the majority of IKE 
changes for the shorter forecast intervals. Therefore, the 
model will perform poorly at explaining these smaller, 
short term changes that are dominated by observational 
biases. Furthermore, the predictors used in SPIKE are 
observed and not forecasted. Therefore, this exercise is 
not hurt by forecast biases and errors. Instead this 
exercise is a proof of concept for forecasting IKE 
changes given idealistic perfectly forecasted predictors.  

The shared variance scores of SPIKE for predicting 
kinetic energy changes are all significant considering 
the large sample sizes from using thousands of storm 
fixes between 1990 and 2011. The shared variance 
statistics for SPIKE are particularly impressive at the 
longer forecast intervals (r

2
 = 0.54), where they 

approach and in some cases exceed the shared 
variance levels for SHIPS and TC intensity (DeMaria 
and Kaplan 1994; 1999). Admittedly, the model 
performs quite poorly in the shorter ranges, especially 
considering observed predictors are used instead of 
forecasted predictors.  

Although SPIKE is designed to predict the normally 
distributed quantity of kinetic energy change, it can still 
be adapted to predict total kinetic energy (Figure 2). 
This is done by adding the estimate of IKE change from 
SPIKE to the known persistence IKE value. The shared 
variance levels between SPIKE’s total kinetic energy 
estimates are significantly higher than its estimates for 
kinetic energy fluctuations. At a forecast interval of 
12hrs, SPIKE can estimate total IKE with a staggering 
explained variance of 84%. This shared variance drops 
off to 70% by 30 hours and a still impressive 60% by a 
forecast interval of 72 hours (Figure 3).  

The reason for this apparent increase of skill from 
predicting total IKE is a result of more predominantly 
incorporating persistence into the forecast. Since IKE is 
an integrated quantity, it is much more inertial than a 
quantity such as intensity. Whereas a point metric like 
maximum sustained wind can and does change rapidly 

somewhat regularly (e.g. Kaplan and DeMaria 2003), 
kinetic energy integrated across the entire wind field 
does not change as rapidly. Although drastic intensity 
changes do impact IKE values, rapid intensification (RI) 
events typically result in a drastic increase of near 
surface winds over a small confined area of convection 
near the center of the storm. Therefore, the impact on 
IKE during RI is typically small, provided the overall size 
of the storm’s wind field remains somewhat constant. 
Therefore, a persistence forecast of total IKE is typically 
very skillful, especially in a short forecast interval. 
However, at longer forecast intervals, persistence does 
not fare nearly as well (r

2
 = 25% at 72hrs; Figure 3). In 

fact, the SPIKE regression model is more skillful at 
estimating total IKE values at a 72 hour forecast interval 
than persistence is in forecasting the same quantity at a 
much shorter 30 hour interval. The lack of skill over time 
indicates that environmental and storm-specific data 
must be utilized for longer-term forecasts of IKE. 

In addition to simply calculating shared variances 
over the calibration interval, some validation exercises 
are performed using standard bootstrapping techniques. 
These bootstrapping exercises are done by training the 
model over a sample that is created by randomly 
selecting data points from the overall population of IKE 
and predictor data (repetition allowed). The regression 
coefficients from the model trained over this sample are 
then used over the original population to examine how 
much skill is lost. In the case of the SPIKE model for 
kinetic energy change, there is an average decrease in 
shared variance of 3.7% across all twelve of the 
forecast intervals. The decrease of skill for the total 
kinetic energy estimates is less significant, averaging 
less than 0.5% across all of the forecast intervals. 
Ultimately, these simple tests indicate that SPIKE 
should be able to retain predictive skill when using a 
different sample of data. However, once again, because 
developmental SHIPS data is used for the predictors, 
there will likely be a decrease in skill when using 
forecasted predictors in an operational setting.   

 
5. CONCLUSIONS 

 

Although kinetic energy forecasts are uncommon in 
operations today, IKE is a metric that at the very least 
can complement forecasts of intensity metrics. 
Forecasts of IKE could potentially help forecasters to 
better assess the damage potential of a TC, particularly 
the risks resulting from storm surge in larger storms. 
Therefore, we designed a statistical regression model to 
estimate changes of IKE in Atlantic TCs out to 72 hours. 
The model created here explains as much as 50% of 
the variance in historical IKE changes out to three days.  

More impressively, it is found that forecasting total 
IKE is more skillful when persistence is added to 
SPIKE’s forecast for kinetic energy change. In fact, the 
model can explain more than 80% of the observed 
variance in historical IKE values at a 12hr forecast 
interval, trailing down to near 60% at 72hrs. The 
increase in skill is attributed to the inertial nature of the 
IKE metric. The fact that a persistence is a viable kinetic 
energy forecast in the short term could be used to the 



advantage of forecasters in assessing TC risks, 
especially considering the lack of recent improvements 
in forecasting the notoriously challenging intensity 
metrics (Rappaport et al. 2009). 

Overall, this exercise serves as a proof of concept 
that when given accurately forecasted predictors, it is 
possible to forecast IKE in an operational setting. This 
work can be built upon by using IKE forecasts to 
statistically estimate storm size and wind field 
distribution. Future work will also be focused on 
adapting this model into a dynamical-statistical model 
that can be used in real time, while also continuing to 
build upon our understanding of the underlying physical 
processes that control kinetic energy variability. 
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8. FIGURES AND TABLES 
 

Variable Definition Units 

PIKE Persistence of IKE TJ 

dIKE12 Previous 12hr change of IKE TJ 

RHLO 850-700 hPa relative humidity % 

SHRD 850-200 hPa shear magnitude kts 

DTL Distance to nearest landmass km 

D200 200 hPa divergence 10
-7

 s
-1

 

MSLP Minimum sea level pressure hPa 

VORT 850 hPa vorticity 10
-7

 s
-1

 

LAT Latitude of storm’s center °N 

RD26 Ocean depth of 26°C isotherm m 

EPSS 
Average difference between 
lifted surface parcel θe and 
200-850 hPa environment θes 

°C 

PENV Average surface pressure hPa 

REFC Relative eddy momentum flux m·s
-1

·day
-1

 

PDAY 
Number of days removed from 
peak of season (Sept. 10) 

days 

Table 1: Variables used in the SPIKE models. The 

coefficients for these variables are significant at the 99% 
level for at least half of the forecast intervals. Many of 
the variables (e.g. RHLO, SHRD) originated from SHIPS 
and are averaged over specific areas. For full details 
see the SHIPS predictor file (DeMaria and Kaplan 1999) 
 

Variable 
Forecast Hour 

12hr 24hr 36hr 48hr 72hr 

PIKE -0.53 -0.70 -0.72 -0.70 -0.70 
dIKE12 0.11 0.02 0.02 0.00 -0.01 
RHLO -0.13 -0.19 -0.22 -0.23 -0.25 
SHRD 0.06 0.11 0.12 0.13 0.13 
DTL 0.14 0.15 0.15 0.14 0.15 
D200 0.12 0.13 0.12 0.12 0.11 
MSLP -0.26 -0.37 -0.39 -0.40 -0.41 
VORT 0.16 0.19 0.20 0.20 0.20 
LAT 0.24 0.30 0.33 0.34 0.36 
RD26 0.11 0.11 0.10 0.10 0.09 
EPSS 0.06 0.08 0.09 0.09 0.11 
PENV -0.08 -0.10 -0.13 -0.14 -0.18 
REFC 0.07 0.08 0.07 0.05 0.04 
PDAY -0.08 -0.10 -0.11 -0.10 -0.08 

Shared 
Variance 

13% 25% 39% 43% 54% 

Table 2: Regression coefficients for each predictor in 

the SPIKE model. The coefficients listed in a black font 
are significant at 99%. Shared variance between the 
SPIKE regression model, and observed kinetic energy 
changes are listed in the bottom row. 

 
Figure 1: Relative frequency distribution of six-hourly 

IKE measurements in Atlantic TCs between 1990 and 
2011. This sample includes 5498 fixes from 291 storms. 
Red vertical lines are shown to indicate IKE values for 
selected hurricanes just prior to a US landfall. The times 
of these IKE measurements are as follows: Irene 
8/26/11 06Z; Ike 9/13/08 00Z; Sandy 10/29/12 18Z. 

 
Figure 2: Scatter plot of observed total IKE values vs. 

estimated total IKE values from a 24-hour SPIKE 
regression model (blue dots). The dark black line 
represents the best fit line between the 4239 observed 
and estimated data points. The dashed line represents a 
perfect forecast (y=x). 

 
Figure 3: Plot of shared variance over forecast hour for 

total IKE. The blue line represents the shared variance 
between the observations and the SPIKE model. The 
red line represents the shared variance between 
persistence and the observed IKE value a certain 
number of hours later.    
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