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1. Introduction

The Australian Bureau of Meteorology uses a
Monte Carlo ensemble of TC forecasts (track,
intensity, structure) to predict wind exceedance
probabilities, based on the method used in the
USA and described by DeMaria et al. (2009).
The Bureau of Meteorology is also seeking to up-
grade its tropical cyclone storm surge prediction
system. Storm surge is very sensitive to cyclone
track and other details of the atmospheric forc-
ing, so surge forecasts should ideally be proba-
bilistic. Thus an ensemble of atmospheric forc-
ings is required. Forcing a storm surge model
with the DeMaria track ensemble would be an
elegant solution, since it would mean that the
storm surge system would inherit the uncertainty
information from another part of the forecast
system and thereby benefit from the develop-
ment and verification effort already made, as
well as ensuring consistency between the prob-
abilistic wind and surge forecasts. However, we
shall see that these tracks are not smooth. While
this irregularity is acceptable for the calculation
of wind probabilities, it is likely a problem for
storm surge prediction, since the ocean has a
“memory” through its inertia.

This report outlines preliminary results from a
revised track generation method, which does not
alter those properties of the ensemble that are
presently used operationally, but does improve
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the smoothness of individual tracks and hence
their utility for forcing a storm surge ensemble
prediction system. At present, the new method
has only been developed for the track component
of the system, but we expect that the same meth-
ods will also prove useful for the intensity and
structure components. The approach is to mod-
ify the serial correlation in the DeMaria track en-
semble to make individual tracks smooth, with-
out substantially altering the probability distri-
butions at each time. The new method also has
some further advantages:

• The new method is continuous (rather
than discrete) in time, so arbitrary time-
interpolation is not needed.

• The new method has fewer parameters that
must be fit from data, so a smaller training
dataset is needed and the parameters can
be upgraded more frequently, or different
sets can be used for different geographical
regions or times of the year.

• The parameters to the new method have
somewhat clearer physical meanings than
the old, so it would be more straightforward
to estimate them from other sources. For
example, they could be estimated directly
from an NWP ensemble, or from such an
ensemble and then blended with the clima-
tological values.
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Fig. 1. An ensemble of 50 perturbed tropical cyclone tracks calculated by the method of DeMaria
et al. (2009) (blue), together with the input track (red) and the ensemble mean calculated from a
much larger ensemble (green).

2. Analysis of the DeMaria et al.
(2009) method

The DeMaria et al. (2009) method models the
track errors by a first-order autoregressive pro-
cess. The along-track perturbation at time t is
given by

ATt = atATt−12 + bt + ǫt (1)

where at, bt are adjustable parameters derived
from an analysis of historical errors, ATt−12 is
the track perturbation at the preceding time 12
hours before, and ǫt is a random number. Other
perturbations (cross-track, intensity, structure)
are modelled similarly, albeit with their own set
of adjustable parameters and some additional re-
finements to account for landfall, etc.

Figure 1 displays an ensemble of 50 such tracks
(blue curves)1. For convenience, they are here
drawn as perturbations about a straight track to
the west with a uniform motion of 20 km hr−1

(thick red curve). The ensemble mean (calcu-

1This figure uses the model parameters listed in Table
1 of DeMaria et al. (2009), but approximates the random
draws from the distribution shown in their Fig. 1 by ran-
dom draws from a Gaussian with mean 0 km and standard
deviation 50 km.

lated from a 10000-member ensemble to min-
imise sampling error) is shown in green, and it
can be seen that there is a small systematic per-
turbation from the deterministic forecast track
(red). Note that the ensemble tracks contain un-
realistic kinks; these are not present in the input
track and are undesirable for storm surge fore-
casting since the ocean circulation will require
time to adjust to the new storm motion after
each such kink.

Figure 2 shows the covariance matrices for the
along- and cross-track perturbations, and the
corresponding standard deviations and correla-
tion matrices, again calculated from the 10000-
member ensemble. Note that the standard devi-
ation does not increase smoothly with time, and
that the correlation matrix has cusps at zero-lag
(that is, along the diagonal of the matrix)2.

3. The new covariance model

The covariance matrices in Fig. 2 characterize
the distribution of the track ensemble; sampling

2We can show empirically that the cusps – that is,
points where the first derivative of the correlation is dis-
continuous – are associated with the kinks in the track,
but have not yet completed a full mathematical analysis.
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Fig. 2. Some statistical properties of the DeMaria et al. (2009) ensemble, all calculated from
a 10000-member ensemble. First column: Covariance matrices for the along- (top) and cross-
track (bottom) perturbations. Second column: The corresponding correlation matrices. Third
column: Line plots of the rows of the correlation matrices. Note the cusps at zero lag (i.e. where
the correlation equals 1). Fourth column: The standard deviations (i.e. the square roots of the
diagonals of the covariance matrices).
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Fig. 3. The time transform (2) plotted for var-
ious α.

from a distribution with these covariances would
be another way of generating a track ensemble.
The new method makes modest changes to the
covariance matrices, so as to remove the kink-
causing features, while not significantly chang-
ing those properties of the ensemble that are
presently used operationally for wind probabil-
ity prediction. In particular, this means that the
variance at each time must remain almost unal-
tered, but that the serial correlation structure

can be changed.
In making these modifications, it is important

that the new matrices be covariance matrices;
that is, that they represent the time-lag covari-
ances from a statistical process. This is impor-
tant for two reasons: firstly to ensure that the
new method has a suitably rigorous statistical
underpinning, and secondly to enable the calcu-
lation of random elements from the distribution
so defined. There is an extensive body of theory
on the calculation of such matrices, used for ex-
ample in meteorological data assimilation. We
follow that theory and define the covariance ma-
trices in terms of a suitable analytic correlation
function, except written in terms of time differ-
ences rather than distances. Gaspari and Cohn
(1999) contains much of the relevant theory.

It is apparent from Fig. 2 that the perturba-
tions are more strongly correlated later in time,
than initially. We model this effect by using a
transformed time variable τ ,

τ = α log(t/α+ 1) (2)

This function is plotted for various α in Fig. 3.
where t is time and α > 0 determines the
strength of the transformation. In the limit
α → ∞ the transformation reduces to τ = t.
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Fig. 4. As for Fig. 2, except calculated using the new method described in the text. These
calculations were done with a time interval of 3 rather than 12 hr, and only every fourth line of the
correlation matrices is plotted in the third column for clarity. Note that the correlation matrices
for the along- and cross-track perturbations are identical. The fourth row plots standard deviations
from both the original DeMaria et al. (2009) ensemble (blue) and the polynomial fit used in the
new method (green).

It is apparent also from Fig. 2 that the
correlation function has reasonably fat tails.
The widely-used Gaussian correlation function
is therefore unsuitable, and after some experi-
mentation we chose a second-order autoregres-
sive (SOAR) function,

Cij = (1 + |dij |) exp (−|dij |) (3)

where

dij = (τi − τj)/L (4)

is the difference between transformed times τi
and τj normalized by a time scale L. The second
derivative of (3) is defined at all dij (including
dij = 0), so the correlation function lacks cusps.
The correlations in Fig. 2 are quite similar for
the along- and cross-track perturbations, so we
use the same matrix for each in the new model.

The time-stretching function (2) is monotonic,
and the SOAR function is a correlation function,
so by the results in Gaspari and Cohn (1999) the
matrix with elements Cij is a correlation matrix.

We smooth the standard deviations and inter-
polate in time by fitting a cubic polynomial, as
shown in Fig 4. The use of a cubic is proba-
bly excessive and linear growth may well be an
adequate approximation.

The resulting matrices with α = 3hr, L = 3hr
are plotted in Fig. 4, and it is apparent that
they are a reasonable approximation to those
shown in Fig. 2. The parameter values for α
and L used here are rough estimates, and a more
objective method should be used operationally.
Note that the diagonals of the covariance matri-
ces are changed from those in Fig. 2 only by the
slight smoothing of the standard deviations, so
the marginal distribution of the pdf at any time
will be almost unchanged. Thus, the use of this
model to estimate wind probabilities will yield
answers nearly indistinguishable from those ob-
tained using DeMaria et al. (2009).

We generate random draws from the pdf with
covariance matrix B as follows. B is a covari-
ance matrix, so has a real symmetric square root
B1/2 satisfying B1/2B1/2 = B and B1/2T =
B1/2.3 Generate a column vector x of indepen-

3Any real matrix A may be written in terms of its
singular value decomposition A = UΣV

T where U and
V are orthonormal and Σ is diagonal; the diagonal ele-
ments of Σ are called the singular values of A. If A is
square, then so are U, V and Σ; if it is symmetric, we
may choose U = V; and if it is positive semidefinite, the
singular values are all nonnegative. A covariance matrix
B possesses each of these properties, and so UΣ

1/2
U

T is
a real symmetric square root; here Σ

1/2 denotes (in con-
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Fig. 5. As for Fig. 1, except calculated using the new method with α = 3hr, L = 3hr.

dent Gaussian random numbers of unit variance,
and let

y = B1/2x+ c (5)

where c is the mean deviation of the track en-
semble from the input track in DeMaria et al.’s
(2009) method (i.e. the difference between the
red and green curves in Fig. 1). The expected
value of y is

〈y〉 = B1/2〈x〉+ c = B1/20+ c = c (6)

where the angle braces 〈·〉 denote the expected
value and 0 is a vector of zeros. The covariance
matrix of y is

〈(y − c)(y − c)T 〉 = 〈B1/2xxTB1/2〉

= B1/2〈xxT 〉B1/2

= B1/2IB1/2

= B.

(7)

so y has the desired properties.
Figure 5 shows a track ensemble generated

using the new method. Clearly, the tracks are

trast to the above useage) an element-wise square root of
the diagonal matrix Σ.

much smoother than in Fig. 1, but the ensemble
mean (green curve) is similar – in fact, it is iden-
tical apart from sampling error. Figure 6 shows
the marginal pdf of along- and cross-track posi-
tion every 12 hours for this method and DeMaria
et al.’s (2009), and it is clear that the distribu-
tions are virtually unchanged.

4. Discussion

A new method for calculating a synthetic trop-
ical track ensemble has been described. By con-
struction, it yields results which have very sim-
ilar marginal pdfs at each time to the method
described by DeMaria et al. (2009), and hence
will not interfere with the current application,
namely of predicting wind probabilities. How-
ever, it also yields smoother tracks, without the
kinks that are apparent in ensembles generated
using the DeMaria et al. (2009) method. We ex-
pect that these will be more suitable for other
applications, specifically for providing the atmo-
spheric forcing to a storm surge model.

The new method may have some further ad-
vantages. The statistical model is a relatively
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Fig. 6. The marginal pdfs of the along-track and cross-track position perturbations, calculated
every 12 hours for 10000-member ensembles according the the method of DeMaria et al. (2009)
(blue) and as described in the text (red).
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Fig. 7. Two somewhat unrealistic examples illustrating the flexibility of the new model. Top:
weak temporal correlation leading to quite “wriggly” tracks (α = 24hr, L = 6hr). Bottom: strong
temporal correlation (α = 3hr, L = 12hr). Both were calculated at 3 hr, rather than 12 hr,
intervals.
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parsimonious model, with many fewer parame-
ters than the original. It should thus be easier
to estimate these parameters, and less training
data will be needed. In addition, the parame-
ters have a clear physical meaning. We expect
that they could be estimated from a numerical
weather prediction ensemble prediction system,
opening the possibility of using “errors of the
day” in generating the ensemble. For this appli-
cation, they could also be blended with climatol-
ogy before use, perhaps obtaining the advantages
of both. The requirement for less training data
also opens up the possibility of more frequent
updates to the parameters. It may even prove
advantageous to use different parameter sets for
different geographical regions, cyclone intensities
(many forecasters regard intense storms as gen-
erally easier to forecast than weak ones), times
of the year, or even pre- and post-recurvature.

Another advantage is that the new model is
continuous in time, rather than the fixed 12-hour
intervals in DeMaria et al. (2009). Generating
more frequent data will increase the size of the
matrices, but hourly intervals out to 120 hours
would still only require operations on matrices
which are several hundred elements square, eas-
ily manageable on modern desktop computers.
There is thus no need for an arbitrary time inter-
polation, and more frequent data may allow for
more accurate modelling in situations of rapid
change such as at landfall, a possibility we aim
to explore further.

The covariance model allows for a large degree
of flexibility. For example, the two ensembles in
Fig. 7 have the same spread at each time, but
different correlation structures. Reducing the
time-correlation leads to “wigglier” tracks, while
increasing it results in quite linear perturbation
growth. While neither of these examples is par-
ticularly realistic, they do illustrate the range of
possibilities.

In summary, the new method preserves the
good features of the method described by De-
Maria et al. (2009) and used operationally in
the USA and Australia, but produces smoother
tracks which are likely more suitable for forc-
ing a storm surge ensemble. The next step in
this research is to expand the analysis described

here to include the other components of the De-
Maria et al. (2009) method, with the aim that
this should eventually become part of the Aus-
tralian Bureau of Meteorology’s planned new
storm surge prediction system.

REFERENCES

DeMaria, M., J. A. Knaff, R. Knabb, C. Lauer,
C. R. Sampson, and R. T. DeMaria, 2009: A
New Method for Estimating Tropical Cyclone
Wind Speed Probabilities. Weather and Fore-

casting, 24, 1573 1591.

Gaspari, G. and S. E. Cohn, 1999: Construction
of correlation functions in two and three di-
mensions. Quart. J. Roy. Meteor. Soc., 125,
723–757.

8


