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1. INTRODUCTION 
 

Landfalling hurricanes cause large amounts of economy 
damage, injury and loss of life. In the United States, 
hurricane losses account for the largest fraction of insured 
losses from all natural hazards (Bevere et al. 2013). It has 
been expected that hurricane loss (L) would depend on 
maximum wind speed (Vmax), storm size (R), precipitation, 
storm surge, duration, path, and other factors such as 
building structure and population density (Vickery et al., 
2006). Many studies have examined the dependency of 
hurricane loss on maximum wind speed and applied the 
wind speed dependency in empirical loss models. However, 
the relationship between hurricane loss and size has not 
been quantified, partly due to the lack of accurate 
measurements of storm size for the past historical events. 
 

The dependency of hurricane economic loss on maximum 
wind speed follows an approximate power-law relationship, 
i.e., L= αVmax

β, with β ranging between 3 and 9 (Pielke 2007; 
Nordhaus 2010; Bouwer and Botzen 2011; Emanuel 2011) 
and α being a scaling factor. Murnane and Elsner (2012) 
analyzed normalized US hurricane losses from 1900 to 2011 
by a linear fitting between log10(L) and wind speed for the top 
10%, 25%, 50%, 75%, and 90% of hurricane losses. This 
method, called quantile regression approach, suggested an 
exponential relationship between normalized loss and wind 
speed.  

 
Emanuel (2005) provided a theoretical basis for a possible 

relation between hurricane loss and size. He expressed the 
total power dissipation (PD) of a tropical cyclone (TC) as the 
integral of the cubic of maximum wind speed over the size 
(R) of a storm through its lifetime (𝜏) 
 

           𝑃𝐷 = 2𝜋 𝐶!𝜌
!
!

!
! 𝑉 !𝑟𝑑𝑟𝑑𝑡,  (1) 

 
where CD is the surface drag coefficient, ρ is the surface air 
density, |V| is the magnitude of surface wind speed, r is the 
radius of the storm, and the integral is from storm center to 
the outer storm limit and over the lifetime (𝜏) of the storm. 
Since the economic loss of a hurricane is driven by PD, 
Equation (1) shows that loss would increase with the 
squares of average storm size. However, due to the lack of 
historical data for size, Emanuel (2005) simplified the Eq (1) 
to omit the size dependency in actual calculations of PD. 
 

Hurricane Sandy in 2012 reminded us that storm size 
should not be ignored when considering hurricane loss. A 
unique characteristic of Sandy is its enormous size when the  
tropical cyclone merged with a mid-latitude frontal system. At  
its peak size, Sandy’s tropical storm-force winds (wind speed 
greater than 34 knots) spanned 1,100 miles, making it the 
largest Atlantic hurricane on record in terms of size.  
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Hurricane Sandy made landfall on October 29, 2012 as a 
Category 1 hurricane, and its storm surge devastated 
coastal New Jersey and New York. The normalized loss for 
Sandy is 51.2 billion in 2013 US dollars based on the ICAT 
Damage Estimates (http://www.icatdamageestimator.com), 
making Sandy the eighth most costly storm since 1900. Out 
of the top 10 most expensive storms, Sandy is the only 
Category 1 hurricane at landfall; all other storms are 
Category 3 and higher. Therefore, it is important to consider 
not only wind speed but also storm size to account for 
hurricane losses.  

 
The objective of this study is to quantify the relationship 

between hurricane loss and the hurricane maximum wind 
speed and size using multi-variate regression method and 
provide an empirical model for hurricane loss using both 
maximum wind speed and size as predictors.  The estimated 
hurricane losses by the bivariate regression model are 
compared with those from the simple regression models 
using maximum wind speed or size alone. In particular, the 
relative roles of maximum wind speed and size in 
determining Hurricane Sandy’s loss are analyzed. 
 
2. DATA AND APPROACH 
 

The US hurricane loss data are downloaded from the 
ICAT Damage Estimator website. ICAT is an insurance 
company that provides catastrophe insurance coverage to 
business and homeowners in the US. The losses are 
normalized to 2013 US Dollars, taking into account of 
inflation, wealth and population differences between the 
years that landfalling hurricanes occurred (Pielke et al. 
2008). The loss data include hurricanes since 1900. The 
maximum wind speed at landfall for each storm is also 
provided by ICAT.  
 

For storm size, five metrics are available in the Tropical 
Cyclone Extended Best Track database maintained by the 
National Hurricane Center (NHC), dating back to 1988. R34, 
R50 and R64 represent the radii of a storm where wind 
speeds at 10 meter height above the surface are 34, 50 and 
64 knots, respectively. Rmax represents the radius of 
maximum wind speed. Rout is the radius of the outmost 
closed isobar, i.e., the outer limit of a storm. The size data 
are given at four quadrants for each storm at 6-hourly 
interval. Averages of radii at the four quadrants are used in 
this study, although different weights for each quadrant may 
be explored in the future. While R50, R64 and Rout are highly 
correlated with R34 with correlation coefficients close to 0.8, 
Rmax and R34 are only weakly correlated with a correlation 
coefficient of 0.13 for all available size data since 1988. The 
correlation between normalized hurricane loss and Rmax is 
found to be less than 0.1. Therefore, only R34 is used as a 
size metric for the regression models for loss. A total of 73 
tropical cyclones that made landfall in the US between 1988 
and 2012 form the basis of this analysis.  
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To construct a best-fit model to hurricane loss, the multi-
variate regression tool available in Microsoft Excel Data 
Analysis package is used. Loss is expressed as a function of 
maximum wind speed, a function of size, and a function of 
both wind speed and size. Sensitivity of the fittings to storm 
intensity (i.e., maximum wind speed) is examined.  

 
The regression tool yields R2 as explained variance and p-

value for statistical significance of each fit. The explained 
variance indicates how much variance of the predictant (y) 
can be accounted for by the regression model using the 
predictor(s). The higher R2 corresponds to a better fitting in 
terms of capturing the variations of a predictant. The p-value 
is the probability of the fitting coefficients for each predictor 
being zero. In other words, it is the chance of the 
dependency of the predictant on a predictor being purely 
random. To reject the null hypothesis that the dependency is 
random at a 95% statistical significance level, the p-value 
should be less than 0.05. The smaller p-value is, it is more 
statically significant that the fitting coefficients are nonzero.  
 

 
 
 
 
 
3. THE RELATIONSHIP BETWEEN LOSS AND MAXIMUM 

WIND SPEED 
 

Figure 1 is a scatter plot between losses and maximum 
wind speeds for the 73 cases. Both quantities are expressed 
in logarithms of base 10. There is an approximate linear 
relation between loss and wind speed in logarithmic scale, 
suggesting a power-law relationship between L and Vmax. A 
least-squares linear fit yields L =10−1.39Vmax

5.27 , which gives an 
R2 of 0.39. The economic loss model thus explains 39% of 
the variance of the loss with a p-value of 3.32×10−9 for 
statistical significance level of 95%. This small p-value 
suggests that it is statistically significant at 95% level to 
reject a null hypothesis that the coefficient for Vmax equals 
zero. The correlation between the logarithms of L and Vmax is 
0.63. The calculated root-mean-square (RMS) for the least-
squares fit residuals of log10(L) is 0.93. The RMS accounts 
for how accurate the model is when estimating the actual 
loss. A low RMS means the model’s estimated values are 
close to the actual values while a high RMS means the 
model’s estimated values are far off from the actual values. 
Therefore, a low RMS is preferred. Here, a RMS of 0.93 
suggests that the fitting errors for losses are on average 
within a factor of 10. 
  
 
 

4. THE RELATIONSHIP BETWEEN LOSS AND STORM 
SIZE 

 
Figure 3 shows the relationship between loss and storm 

size, represented by R34. Their logarithms exhibit an 
approximately linear relation, but with more scatter than the 
counterpart for loss and wind speed. The lead-squares fit 
yields L =103.94R2.36 . This linear fit captures only 26% of the 
variance of the loss, with the corresponding correlation of 
0.51 and a p-value of 5.04×10−6 for statistical significance 
level of 95%. The RMS for the least-squares fit residue of 
log10(L) is 1.03. 

 
 
 
 
 
5. DEPENDENCY OF LOSS ON MAXIMUM WIND SPEED 

AND SIZE 
 

Using multi-variate linear regression, a loss model using 
both wind speed and size as predictors can be obtained. The 
correlation between wind speed and size is about 0.3 for the 
73 tropical cyclones, indicating that they could serve as two 
nearly “independent” variables for a prediction of losses.  
    Following the approximate power-law relations shown in 
the preceding sections, a general form of the loss model is 
assumed to be 
       𝐿 = 10!𝑉!"#! 𝑅!,  (2) 
 
where c is a scaling factor represented by the regression y-
intercept, while a and b are the regression coefficients 
(slopes) for maximum wind speed and size, respectively. 
Such coefficients, termed “elasticity” as in Nordhaus (2010), 
are found to be different for subsets of the data grouped by 
maximum wind speed, shown in Table 1. 
 

 
 
 
 
 
 

Figure 1. The scatter plot of losses versus maximum 
wind speed for the 73 tropical cyclone cases. Both losses 
and wind speeds are shown in logarithm of base 10. 

Figure 2. The scatter plot of losses versus R34 for the 73 
tropical cyclone cases. Both losses and R34 are shown in 
logarithm of base 10. 

Table 1. Regression results using maximum wind speed 
and/or size as predictors for loss, following the function 
form L=10cVmax

aRb. See text for details. R2 is the 
explained variance of loss by a regression model. 
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For all 73 tropical cyclone cases (Vmax ≥ 35 mph), a is 
4.18, b is 1.25, and c is −1.83.  For Category 1 or higher 
hurricanes (Vmax ≥ 75 mph), a is 4.98, b is 2.66, and c is 
−6.22. For major hurricanes of Category 3 or higher (Vmax ≥ 
110 mph), a and b increase to 11.97 and 4.44, respectively, 
and c is −24.62. When wind speed is greater than 120 mph, 
a and b slightly decrease to 9.97 and 3.52, respectively; 
however, the sample size is very small (only 8), the results 
may not be robust at these extremely high wind speeds.  

 
Figure 3 shows the general increasing trend of “elasticity” 

for wind speed and size with storm intensity. The higher 
elasticity on wind speed for stronger storms is consistent 
with the previous studies (Nordhaus, 2010; Murnane and 
Elsner, 2012) despite that fewer but more recent samples 
are examined here. The increased power-law dependency of 
loss on size for Category 1 and higher hurricanes suggests 
that it is particularly important to consider the impact of size 
on loss for high-intensity storms, which are generally 
associated with greater losses than weaker tropical storms. 
 

 
 
 
 
 

 
Furthermore, the explained variances by the bi-variate 

regressions are noticeably higher when maximum wind 
speed is higher. For example, the value of R2 increases from 
43% for storms with Vmax ≥ 35 mph to 69% for hurricanes 
with Vmax ≥ 75 mph, as shown in Table 1, Column 3. This 
suggests that wind speed and size play greater roles in 
determining losses when storm intensity reaches a certain 
threshold value, for example, 75 mph. Other factors, such as 
storm path, duration, and building structure could mask the 
relationship of loss with wind speed and size when storm 
intensity is weak. 

 
Table 1 also lists the regression coefficients and explained 

variances if only wind speed or size is used for the least-
squares fit for each subset of samples (Columns 7 to 10). 
Using two predictors consistently captures more variance of 
losses than using either wind speed or size alone in any 
subsets of samples. For storms with maximum wind speed 
below 100 mph, using wind speed or size alone would yield 
a higher elasticity on wind speed or size than using wind 
speed and size together, while the opposite occurs when 
maximum wind speed is at or greater than 100 mph. 
However, the single-variate regression captures less than 
one-third of the total variance of losses when Vmax ≥ 100 
mph.  The dependency on size is between the second and 
fourth power, generally of lower order than the dependency 
on wind speed.  

 

 
 
 
 
 
As the least squares regressions are performed on the 

logarithm of losses, the fitted values of losses are much 
lower than actual losses at large loss values. This occurs 
because taking the logarithm of the losses would reduce the 
impact of the more destructive hurricanes in regression 
fittings. To amplify the impacts of the large losses, we 
applied weights to the original data. This can be done by 
multiplying log10(L), log10(Vmax), and log10(R) by a weighting 
function W and using the multi-variate regression tool to 
perform a tri-variate regression of Wlog10(L) using 
Wlog10(Vmax), Wlog10(R) and W as predictors. In this 
regression, we set the y-intercept to zero so that the 
regression coefficients for Wlog10(Vmax) and Wlog10(R) are a 
and b, respectively, while the regression coefficient for W 
gives the constant c, as in Eq (2), because  
 
   𝑊𝑙𝑜𝑔!" 𝐿 = 𝑎  𝑊𝑙𝑜𝑔!" 𝑉!"# + 𝑏  𝑊𝑙𝑜𝑔!" 𝑅 +   𝑐  𝑊          (3).                                             

 
A natural choice of weights is the values of losses. We 

also explored using the square roots of losses as weights. 
The resulting regression coefficients using the two different 
weights are shown in Table 2. For all samples and the 
subsamples of Category 1 and higher hurricanes, the 
weighted regressions yield higher order elasticities on both 
wind speed and size than the unweighted regressions 
(except for the elasticity on wind speed when the square root 
of loss is used as weight). The RMSs of fitting residuals to 
log10(L) are somewhat larger when the weights are used, but 
the overall fitting errors are on the same order as the 
unweighted models. The RMSs of residuals for the 
regression models using the subsets of storms with Vmax ≥ 
75 mph are much smaller than those from the regression 
models using all samples. This is consistent with the greater 
explained variance by maximum wind speed and size for 
stronger storms than weaker storms. 

  

Figure 3. Variations of bi-variate regression coefficients, 
a for maximum wind speed and b for size, with 
increasing threshold maximum wind speed, assuming 
that loss (L) follows the function form L=10cVmax

aRb. 

Table 2. Regression results using maximum wind speed 
and size as predictors for loss, following the function 
form L=10cVmax

aRb for unweighted and weighted fittings. 

Figure 4. The predicted losses using various 
regression models, compared to the actual losses for 
the 73 tropical cyclones cases. The inset is the 
zoomed-in figure for the top 10 largest losses.  
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Using the weighted regressions, the estimated losses for 
hurricanes with large losses were much closer to the actual 
values, and the low biases were significantly reduced, as 
shown in Figure 4.  

 
In all the regression models, the loss of Hurricane Katrina 

is underestimated because its loss involved many 
unaccounted-for human impacts, such as the high 
vulnerability of low-rising residential areas, which are beyond 
the physical factors considered here.  

  
 
 
 
 
6.  IMPORTANCE OF THE SIZE ON HURRICANE   

SANDY’S LOSS 
 

In the case of Hurricane Sandy, its maximum wind speed 
at landfall was 75 mph and its size was 385 nautical miles 
(nm) at landfall. Its maximum wind speed is about 90% of 
the average (84 mph) out of the 73 storms but its size is 
about 3.4 times of the average (113 nm) (Figure 5).  

 
Using the loss weighted regression model for all storms, 

               

          𝐿 = 10!!.!!𝑉!"#!.!"𝑅!.!",  (4) 
 
the fitted loss for Hurricane Sandy is about 59.0 billion, quite 
close to the actual loss estimated at 51.2 billion, while all the 
unweighted single-variate and bi-variate regression models 
based on all samples significantly underestimate the loss 
(<10 billion) and the weighted model by the square root of 
loss yields an estimate of 38.0 billion (Figure 6). Excluding 
Sandy in the bi-variate fits yields very similar power-law 
dependencies and the fitted losses for Sandy vary slightly. 
    

 

Figure 7 shows the predicted losses using the weighted 
regression model, Eq (4), for storms with different 
combinations of wind speed and size for an average storm 
and Hurricane Sandy. If Hurricane Sandy were of only the 
average size of 113 nm, its loss would have been about 21 
times smaller than the actual loss. Clearly, the enormous 
size of Hurricane Sandy plays a predominant role in the 
economic loss.  
Using the regression coefficients shown in the last three 
rows in Table 2 derived from storms with Vmax ≥ 75 mph, the 
fitted loss would be $9.9 billion, $51.8 billion, and $36.7 
billion, for unweighted, weighted by loss and weighted by 
square root of loss, respectively. In all these models, the 
dependency of loss on size for Hurricane Sandy is even 
greater than what illustrated in Figure 7. 

 
 
 
 
 
 
7. CONCLUSIONS 
 

The US normalized hurricane losses are found to have an 
approximate power-law relation with maximum wind speed 
and size, indicated by the radius of tropical-storm force 
winds. The power-law order for maximum wind speed 
ranges from between 4-12, while the power-law order for 
size is approximately between 2 and 4. The high elasticity on 
wind speed is consistent with previous studies (Bouwer and 
Botzen 2011; Howard et al. 1972; Nordhaus 2010). This 
study, for the first time, presents a quantitative relationship 
between loss and size using historical data.   
 

The dependency on the storm size is consistent with the 
expectation that the potential destructiveness of a storm is 
proportional to the area of the tropical-storm force winds 
(Emanuel 2005). The exact elasticity (the power-law order) is 
sensitive to the storm intensity – stronger storms have higher 
order power-law dependency on wind speed and size than 
the weaker storms, suggesting that it is especially important 
to take into account storm size when estimating losses for 
high-intensity hurricanes. 
 

Storm size by itself does not account for a large fraction of 
the variance of hurricane losses. However, using wind speed 
and size together explains much more variance of losses 
than using the wind speed alone. Based on this study, 
conventional single-variate empirical models based on only 
maximum wind speed for hurricane loss should be revised to 
include both wind speed and size as predictors.   
 

Figure 7. Predicted losses for a storm of the average 
wind speed and size, or Hurricane Sandy’s maximum 
wind speed and size.  The loss-weighted bi-variate 
regression model is used to estimate the losses. 

Figure 5. Hurricane Sandy’s wind speed and size (in red) 
compared to the averaged wind speed and size (in blue) 
out of the 73 tropical cyclone cases. 

Figure 6. The fitted losses (in blue) by several 
regression models for Hurricane Sandy, compared with 
the actual loss (in red). 
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For Hurricane Sandy, its enormous size contributes 
predominantly to the economic loss. Out of the 73 tropical 
cyclones that were examined, Sandy’s size was 3.4 times of 
the average storm size, corresponding to at least 21 times 
greater economic loss than that by an average sized storm 
at the same maximum wind speed. The huge loss by 
Hurricane Sandy is clearly a demonstration of the impact of 
storm size on economic damage.   

Although many other factors could contribute to hurricane 
losses, the simple regression models using maximum wind 
speed and size as predictors are able to provide the first-
order estimate of storm economic damages. The quantitative 
dependencies reported here provide useful guidance for 
developing more comprehensive loss models for hurricane 
damage research, insurance needs, and hazard 
preparations.  
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