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Snow cover is a critical driver of energy and 
water budget yet lack accurate modeling
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Vertical structure & its variation complicate snow 
processes and modeling 

• However few studies explicitly model 
complex processes in multiple 
vertical layers!
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Most studies of forest structure impact on snow 
processes only  look at planar variables
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Objective:
Simulate differing forest canopy structures’ 

impact on energy & snow budgets 

in Sierra Nevada, CA
using a multilayer soil-canopy-atmosphere model
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Temperature, humidity, shortwave radiation, 
CO2, wind speed, pressure

10 layers
within-
canopy 

4 soil layers

10 layers
above-canopy

Image modified from Eric Kent © 2015

9 sunlit leaf angles
1 shaded  leaf angle

Energy budget, temperature, 
physiology, radiative transfer 

equations and water budget

Snow
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Below canopy snowpack

Snow processes in ACASA 
Precipitation

ThroughfallInterception

Melt

Drip

Evaporation/sublimation

Evaporation/
sublimation
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Soil



Simulated grassland & 3 tree canopy types

Canopy parameters
Grassland Cedar

Umbrella
pine

Fir

• 1-sided total plant area 
indices

• Canopy architecture

• Leaf/canopy drag 
coefficient 

• Canopy height 

• Near infrared  reflectivity

• Visible leaf reflectivity
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Average late winter below 
canopy  snowpack depth 

(m)

Grass 1.84

Fir 0.53

Larch 0.42

Umbrella Pine 0.37

Evaporation <
By 26%

Shorter snow season for top heavy biomass structure
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Fir Larch Umbrella 
Pine

Difference in onset 
of beneath canopy 
snowpack 
melt from grassland 
control (days)

Evaporation <
By 31%

12 16 18
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Counter-gradient fluxes occur frequently
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Conclusion
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