Influence of wind speeds on flux exchange across water-atmosphere interface under different stability conditions

Wind-classes and Atmospheric Stability Ranges

32nd Agricultural and Forest Meteorology Conference
20-24 June 2016
American Meteorological Society
Salt Lake City, Utah, USA
Yusri Yusup
Senior lecturer
Environmental Technology
School of Industrial Technology
Universiti Sains Malaysia

Heping Liu
Associate Professor
Civil & Environmental Engineering
Washington State University
Pullman WA
The energetic life over inland water bodies systems

• Understanding air-water interactions of inland water bodies is critical to ascertain the role inland water bodies have in regulating local and regional weather and its impact to the hydrological balance.

• Wind is one of the main drivers of energy exchange between the atmosphere and water bodies.

• High-wind weather events would dramatically increase energy exchanges (latent heat, LE, and sensible heat, H, fluxes) by 100-200%.
The noisy relationships between LE & H and its drivers

\[LE = (\rho_a L_v) C_E U \Delta q \]
\[H = (\rho_a C_p) C_H U \Delta T \]

- Simple linear relationships between LE & H and its drivers through the bulk transfer equations
- Possible correlations between drivers, U and \(\Delta q \) and \(\Delta T \)
- Atmospheric stability, \(\zeta \), influence on both \(C_E \) and \(C_H \) while \(U \) (\(u^* \)) would affect \(\zeta \)
- \(U \) is central to the inter-relationships between LE & H and its drivers
The study location, instrumentation, and dataset

- **Location:** Ross Barnett Reservoir, Mississippi, 134 km², depth 4 – 8 m.
- **Duration:** 174 days (August 24, 2007 to March 5, 2008)
- **Cold front days:** 12 days
- **Warm front days:** 5 days
Wind-classes I, II, III, & IV

To classify, more than 50% of half-hourly U in the below wind ranges:

- Wind-class I: $U < 2.316$ m s$^{-1}$
- Wind-class II: $2.316 \leq U < 3.693$ m s$^{-1}$
- Wind-class III: $3.693 \leq U < 5.125$ m s$^{-1}$
- Wind-class IV: $U > 5.125$ m s$^{-1}$
Atmospheric stability, ζ, ranges

Categorized atmospheric stability, ζ, into 10 classes of ranges:

1. $-10 \leq \zeta < -1$ (557) – **very unstable**
2. $-1 \leq \zeta < -0.5$ (636)
3. $-0.5 \leq \zeta < -0.1$ (2519)
4. $-0.1 \leq \zeta < -0.05$ (648)
5. $-0.05 \leq \zeta < 0$ (589) – **near-neutral**
6. $0 \leq \zeta < 0.05$ (687) – **near-neutral**
7. $0.05 \leq \zeta < 0.1$ (333)
8. $0.1 \leq \zeta < 0.5$ (796)
9. $0.5 \leq \zeta < 1$ (204)
10. $1 \leq \zeta < 10$ (118) – **very stable**

More unstable

More stable
Diurnal changes in LE, H, & its drivers part 1

- Wind has been reported to change the influence of Δe and ΔT on LE and H.
- H closely follows the diurnal pattern of ΔT in contrast to LE.
- Diurnal Δe changes with wind-class – it decreased in high wind-classes.
- Diurnal ΔT did not behave the same as Δe.
Diurnal changes in LE, H, & its drivers part 2

- Diurnal Δe was relatively constant in wind-class IV.
- LE and H doubled in wind-class IV compared to wind-class I.
- Persistent wind conditions changes the atmospheric drivers of LE and H above water surfaces.
Increased wind-class enhances LE & H

- For positive gradients, higher wind-classes would increase the correlation between LE and Δe and between H and ΔT.
- Negative Δe and ΔT cases would not behave the same as positive Δe and ΔT.
- Regression slopes would dramatically increase after wind-class III.
- Wind-class III is the initial point where LE becomes more correlated with Δe.
Slopes of \(LE/\Delta e \) & \(H/\Delta T \)

\[
LE/\Delta e = (\rho_a L_v) C_E U \\
H/\Delta T = (\rho_a C_p) C_H U
\]

- In wind-class IV, \(LE/\Delta e \) was greatly influenced by atmospheric stability.
- In other lower wind-classes, atmospheric stability did not play an important role in changing \(LE/\Delta e \).
- Persistent high wind conditions and atmospheric stability enhanced the role of \(UC_E \) on \(LE \).
- Under both unstable and stable conditions, \(H \) was influenced by \(UC_H \) but with increased effect in wind-class IV.
Atmospheric stability ranges on LE & H

- Maximum LE, $U\Delta e$ and H, $U\Delta T$ occurred in moderately unstable conditions due to maximum U.
- LE under unstable conditions are dependent on persistent wind conditions compared to stable conditions or H.
- Under weakly unstable conditions, LE and H in wind-class IV more than doubled in magnitude than in wind-class I even when Δe or ΔT is elevated.
- U interacts and enhances C_E to increase LE only under unstable conditions.
- U interacts and enhances C_H to increase H under both unstable and stable conditions.
Bulk transfer coefficients

• The bulk transfer coefficients (C_E and C_H) behaved similarly in all wind-classes and ζ ranges.
• The increase in LE under weakly unstable conditions are due to the interaction of U and C_E.
• The increase in H under both unstable and stable conditions are due to the interaction of U and C_H.
Conclusions

• Persistent wind speed conditions would modify the atmospheric drivers of LE and H and increased the correlation between them.

• Evaporation (LE) and H would be greatly promoted when sufficient wind conditions are met by 2.5 and 2 times, respectively.

• The increase in LE under weakly unstable conditions are due to the interaction of U and C_E.

• The increase in H under both unstable and stable conditions are due to the interaction of U and C_H.
Thank you