On the Roughness Sublayer over Idealized Urban Rough Surfaces in Isothermal Conditions

Chun-Ho LIU* & Yat-Kiu HO
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong

Paper No. 4A.2; Session 4A: Boundary Layer Processes IV
3:45 pm to 4:00 pm; June 20, 2016 (Monday)
The Canyons, Sheraton Salt Lake City Hotel

*Corresponding Authors: Chun-Ho LIU; Department of Mechanical Engineering, 7/F Haking Wong Building, The University of Hong Kong, Pokfulam Road, HONG KONG; Tel: +852 2859 7901; Fax: +852 2858 5415; liuchunho@graduate.hku.hk
Outline

• Outline

• Introduction

• Theoretical Background
 • Analytical solution to mean velocity profile wit RSL/ISL effects

• Experimental Setup & Apparatus
 • Rough surface configuration

• Results & Discussion
 • Velocity/flux profiles & flow properties
 • Spatio-temporally averaged velocity
 • Turbulent length scale

• Conclusions
Introduction

• Flows over rough surfaces are characterized by the increased shear stress & enhanced momentum transfer induced by surface obstacles, such as buildings.

• The (rather homogeneous) flows in the inertial sublayer (ISL) are represented by the conventional logarithmic law of the wall (log-law).

• The inhomogeneous flows in the roughness sublayer (RSL) are often overlooked.
 • Flows are slowed down by roughness elements.
 • Transport processes are (directly) modified by individual roughness elements.
 • Log-law is no longer applicable.

• So there is a need for the functional form of mean velocity profiles that encompasses both the RSL/ISL dynamics.

• Elucidate the turbulent transport processes in the flows over rough surfaces.
Theoretical Background [1/2]

• Monin-Obukhov similarity theory (MOST)

\[\frac{\kappa}{u_*} \frac{d\langle u \rangle}{dz} = \phi_m \left(\frac{z}{L} \right) \times \hat{\phi}_m \left(\frac{z}{L^* z_*} \right) \]

\(L = \infty \) in isothermal conditions

Dimensionless velocity gradient in isothermal conditions

\[\frac{\kappa}{u_*} \frac{d\langle u \rangle}{dz} = \hat{\phi}_m \left(\frac{z}{z_*} \right) \]

\(\phi_m = 1 \) in isothermal conditions

Integrate from \(z_0 \) to \(z - d \)

RSL contribution

\[\frac{\langle u \rangle_{z-d} - \langle u \rangle_{z_0}}{u_*} = \frac{1}{\kappa} \left[\ln \left(\frac{z-d}{z_0} \right) - \int_{z_0}^{z-d} \frac{1-\hat{\phi}_m}{z} \, dz \right] \]

Logarithmic law of the wall

RSL influences vanishes asymptotically for \(z \rightarrow \infty \)

that implies

\[\hat{\phi}_m \bigg|_{z \rightarrow \infty} = 1 \]

Hence

\[\frac{\langle u \rangle_{z_0}}{u_*} = \int_{z_0}^{\infty} \frac{1-\hat{\phi}_m}{z} \, dz \]

Non-zero
Theoretical Background [2/2]

- **RSL velocity profile**
 \[
 \frac{\langle u \rangle}{u_*} = \frac{1}{\kappa} \left[\ln \left(\frac{z-d}{z_0} \right) - \int_{z-d}^{\infty} \frac{1-\phi_m}{z} \, dz \right]
 \]

 \[
 \phi_m = 1 - \exp \left(-\mu \frac{z-d}{z_*} \right) \quad \mu: \text{a constant depending on RSL configuration}
 \]

- **Integral** is then simplified to an exponential integral that can be solved by series expansion. Hence,
 \[
 \frac{\langle u \rangle}{u_*} = \frac{1}{\kappa} \left[\ln \left(\frac{z-d}{z_0} \right) - \gamma + \ln \left(\frac{\mu z-d}{z_*} \right) + \sum_{n=1}^{\infty} \frac{(-1)^n \left(\frac{\mu z-d}{z_*} \right)^n}{n \times n!} \right]
 \]

\(\gamma\): Euler constant \((= 0.5772156649)\)
Experimental Setup & Apparatus [1/4]

• Flow measurements
 • Hot-wire anemometry (HWA).
 • ϕ 5 μm platinum-plated tungsten wires.
 • Partly (copper plating) etched, 2-mm effective sensing length.
 • X-probe design in which the include angle is 100°.
 • HWA output signal is digitized which is then collected by 24-bit NI data acquisition modules (NI 9213) together with LabVIEW software on a digital computer.
 • Sampling frequency is 2 kHz & sampling duration is 50 sec (at each point).
 • Bruun (1971) universal HWA calibration scheme.
Experimental Setup & Apparatus [2/4]

Schematic of the test rack for surfaces with idealized roughness elements used in the wind tunnel experiments.
Idealized rough surfaces with various pitches covering different flow regimes
Reduced-scale models of idealized urban roughness used in the wind tunnel experiments.
Rough-Surface Configuration

<table>
<thead>
<tr>
<th>Rough surfaces</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rib spacing k [mm]</td>
<td>38</td>
<td>57</td>
<td>76</td>
<td>95</td>
<td>114</td>
<td>152</td>
<td>190</td>
<td>228</td>
</tr>
<tr>
<td>Rib size h [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch k/h</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Length of repeating unit l [mm]</td>
<td>57</td>
<td>76</td>
<td>95</td>
<td>114</td>
<td>133</td>
<td>171</td>
<td>209</td>
<td>247</td>
</tr>
<tr>
<td>No. profiles in a repeating unit</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>u_* [m sec$^{-1}$]</td>
<td>0.453</td>
<td>0.516</td>
<td>0.556</td>
<td>0.592</td>
<td>0.598</td>
<td>0.598</td>
<td>0.645</td>
<td>0.671</td>
</tr>
<tr>
<td>U_∞ [m sec$^{-1}$]</td>
<td>8.0</td>
<td>8.4</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.4</td>
<td>9.1</td>
<td>9.0</td>
</tr>
<tr>
<td>u_*/U_∞</td>
<td>0.057</td>
<td>0.062</td>
<td>0.066</td>
<td>0.069</td>
<td>0.070</td>
<td>0.071</td>
<td>0.071</td>
<td>0.074</td>
</tr>
<tr>
<td>Re_∞ (= $U_\infty h/\nu$)</td>
<td>15,200</td>
<td>15,900</td>
<td>16,100</td>
<td>16,200</td>
<td>16,200</td>
<td>16,000</td>
<td>17,300</td>
<td>17,400</td>
</tr>
<tr>
<td>$Re_$ (= u_h/ν)</td>
<td>864</td>
<td>983</td>
<td>1060</td>
<td>1,127</td>
<td>1,138</td>
<td>1,138</td>
<td>1,229</td>
<td>1,277</td>
</tr>
</tbody>
</table>
Results & Discussion
Sample Profiles: $k/h = 4$

Color symbols are the temporal averages at $x := 0$ mm (□); 9.5 mm (Δ); 28.6 mm (∇); 47.6 mm (▷); 66.7 mm (◁); 85.7 mm (◊) and 95.3 mm (○).

Filled symbols are the spatio-temporal averages.

Empty symbols are the RSL/TSL averages of the entire repeating unit.
Flow Properties

<table>
<thead>
<tr>
<th>Rough Surfaces</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBL Thickness δ</td>
<td>[mm]</td>
<td>244</td>
<td>248</td>
<td>283</td>
<td>284</td>
<td>294</td>
<td>294</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>$[h]$</td>
<td>12.84</td>
<td>13.05</td>
<td>14.89</td>
<td>14.95</td>
<td>15.47</td>
<td>15.47</td>
<td>16.00</td>
</tr>
<tr>
<td>RSL Top z_*</td>
<td>[mm]</td>
<td>38.00</td>
<td>44.08</td>
<td>49.97</td>
<td>53.01</td>
<td>50.92</td>
<td>45.03</td>
<td>38.00</td>
</tr>
<tr>
<td></td>
<td>$[h]$</td>
<td>2.00</td>
<td>2.32</td>
<td>2.63</td>
<td>2.79</td>
<td>2.68</td>
<td>2.37</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>$[\delta]$</td>
<td>0.16</td>
<td>0.18</td>
<td>0.18</td>
<td>0.19</td>
<td>0.17</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>ISL Thickness</td>
<td>[mm]</td>
<td>72</td>
<td>55</td>
<td>57</td>
<td>55</td>
<td>53</td>
<td>63</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>$[h]$</td>
<td>3.78</td>
<td>2.89</td>
<td>2.99</td>
<td>2.89</td>
<td>2.78</td>
<td>3.31</td>
<td>3.36</td>
</tr>
<tr>
<td></td>
<td>$[\delta]$</td>
<td>0.29</td>
<td>0.22</td>
<td>0.200</td>
<td>0.19</td>
<td>0.18</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>ISL Top</td>
<td>[mm]</td>
<td>110</td>
<td>99</td>
<td>107</td>
<td>108</td>
<td>104</td>
<td>108</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>$[h]$</td>
<td>5.78</td>
<td>5.20</td>
<td>5.62</td>
<td>5.67</td>
<td>5.46</td>
<td>5.67</td>
<td>5.36</td>
</tr>
<tr>
<td></td>
<td>$[\delta]$</td>
<td>0.45</td>
<td>0.40</td>
<td>0.38</td>
<td>0.38</td>
<td>0.35</td>
<td>0.37</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Spatio-temporally averaged velocity

\[\langle u \rangle (\text{m sec}^{-1}) \]

\[z - d \ (\text{m}) \]

RSL/ISL velocity profile

\[k/h = 2 \]

\[k/h = 3 \]

\[k/h = 4 \]

\[k/h = 5 \]

\[k/h = 6 \]

\[k/h = 8 \]

\[k/h = 10 \]

\[k/h = 12 \]
RMS Error of Different Methods

<table>
<thead>
<tr>
<th>Rough Surfaces</th>
<th>Pitch k/h</th>
<th>Log-law</th>
<th>RSL/ISL Velocity Profile</th>
<th>Roughness Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RSL & ISL</td>
<td>ISL Only</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>0.9589</td>
<td>0.2256</td>
<td>0.0195</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>0.3426</td>
<td>0.1622</td>
<td>0.0340</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>0.2209</td>
<td>0.1210</td>
<td>0.0482</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0.1603</td>
<td>0.0955</td>
<td>0.0635</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>0.1296</td>
<td>0.0820</td>
<td>0.0622</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>0.1341</td>
<td>0.0943</td>
<td>0.0641</td>
</tr>
<tr>
<td>G</td>
<td>10</td>
<td>0.1020</td>
<td>0.0756</td>
<td>0.0533</td>
</tr>
<tr>
<td>H</td>
<td>12</td>
<td>0.1425</td>
<td>0.0976</td>
<td>0.0631</td>
</tr>
</tbody>
</table>
Velocity Profiles in Log Scale

\[\frac{\langle u \rangle}{u_*} \]

\[\frac{(z - d)}{z_0} \]

Increasing roughness

\[\frac{\langle u \rangle}{u_*} = \frac{1}{\kappa} \left[\ln \left(\frac{z - d}{z_0} \right) - \ln \left(\frac{\bar{z} - d}{z_{*0}} \right) - \sum_{n=1}^{n} \left(\frac{\bar{z} - d}{z_n} \right)^{\gamma} \right] \]

Enlarged Figure
Turbulent Length Scale

- Prandtl mixing-length model

\[
\langle u'' w'' \rangle = -K_m \frac{d \langle u \rangle}{dz} = -l_m^2 \left(\frac{d \langle u \rangle}{dz} \right)^2
\]

\(K_m = l_m u_* \) & \(u_* \) is the velocity scale

- Dimensionless momentum flux

\[
\frac{\langle u'' w'' \rangle}{u_*^2} = -l_m^2 \left[\frac{d \langle u \rangle}{dz} \right]^2 = -l_m^2 \left[\frac{1}{\kappa z} \phi_m \left(z/z_* \right) \right]^2
\]

TBL flux-gradient relationship

- Turbulent length scale

\(\approx 1 \) in the RSL/ISL

\[
l_m = \left(\frac{\langle u'' w'' \rangle}{u_*^2} \right)^{1/2} \times \frac{\kappa \times (z-d)}{1 - e^{-\mu \left((z-d)/z_* \right)}}
\]

RSL/ISL dimensionless momentum flux is close to unity

\[
l_m \approx \begin{cases}
\frac{\kappa \times (z-d)}{1 - e^{-\mu \left((z-d)/z_* \right)}} & z_0 \leq z \leq z_* \\
\kappa \times (z-d) & z \to \infty
\end{cases}
\]
Turbulent Length Scale

\[l_m \approx \kappa \times (z - d) \]

\[l_m \approx \frac{\kappa \times (z - d)}{1 - e^{-\mu[(z-d)/z_*]}} \]

Increasing roughness

Enlarged figure
Conclusions

• A new analytical solution to the (spatio-temporally averaged) velocity profile over hypothetical urban rough surfaces in isothermal conditions is proposed.

• An improved agreement with laboratory-scale wind tunnel measurement is demonstrated.

• It’s further developed to estimate the length scale for flows over rough surfaces in which the near- & far-field behaviors are shown.
Acknowledgment

• The 2nd author wishes to thank the Hong Kong Research Grants Council (RGC) for financially supporting his study through the Hong Kong PhD Fellowship (HKPF) scheme. This project is partly supported by the General Research Fund (GRF) of RGC HKU 714913E. Technical support from Mr. Vincent K.W. Lo is appreciated.

http://me.hku.hk/
References

On-Going Wind-Tunnel Research

Reduced-scale Hong Kong down-town 3D printing models
Profiles of dimensionless flow properties in the streamwise direction for different \(k/h \). Filled & empty symbols represent, respectively, the measured profiles at the centerline of ribs and cavities.