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FIGURE 14. Example of signal across the spanwise array of sonic anemometers at SLTEST,
FiGURe 12. View of the measurement array installed at the SLTEST site. 7 /5 — 0,037, Re, = 660000. The x-axis is reconstructed using Taylor's hypothesis and a
convection velocity based on the local mean, U =5.46ms~'. Shading shows only negative
u fluctuations (see grey scale).
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Large-Eddy Simulation of Very-Large-Scale Motions
in the Neutrally Stratified Atmospheric Boundary Layer
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Fig. 4 Pre-multiplied power spectra as functions of the streamwise wavelength for the streamwise velocity
‘component at various heights
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Conditionally averaged large-scale motions in the
neutral atmospheric boundary-layer: insights for
aeolian processes

Chinthaka Jacob - William Anderson
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Fig. 4 Pre-multiplied energy spectrum of fluctuating streamwise velocity for case LES1, where
colorbar shows kg Eg gz /u?. Figure includes annotations of key geometric scales associated
with problem: horizontal blue lines denote domain extent (L) and grid resolution (A), while
horizontal line denotes domain depth, H. Vertical orange line denotes z/H = 0.1, or the
elevation above which large-scale content associated with large- and very-large-scale motions
should be present (Fang and Porté-Agel, 2015).
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Predictive Model for Wall-Bounded Turbulent Flow
|. Marusic ef al.

Science 329, 193 (2010);

DOI: 10.1126/science.1188765

Predictive Model for Wall-Bounded
Turbulent Flow

I. Marusic,* R. Mathis, N. Hutchins

Fig. 1. Schematic of organized coherent
flow motion known as a superstructure and
its interaction across the turbulent bound-
ary layer. These very-large-scale motions
extend from the log region down toward
the wall, both superimposing their signa-
ture and modulating the near-wall region.
The sample u time series highlight the
modulation effect of the large scales on the
small scale at z* = 15; the near-wall lo-
cation corresponds to the peak turbulence
intensity. The features shown in gray in-
dicate elongated filamentary vortex struc-
tures and their conjectured alignment with
the superstructure.
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Inner-Outer Interactions: Amplitude Modulation of Roughness Sublayer

Virtual hotwire rake

Virtual hotwire rake
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Record time-series of velocity across depth of domain (red line)



Time-height contours of 4/(z;,y, 2;,t) = u(x;,y, 21, t) — (a(z1,y, 21, )T
Homogeneous topography:
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Inertial layer momentum excess(deficit) precedes roughness sublayer
excitation(relaxation)



Inner-Outer Interactions: Amplitude Modulation of the Roughness
Sublayer

Marusic et al., 2010: Science: up(y;) = u«(1+ Bur(yo)) + our(yo)
Amplitude Modulation Superposition

up(yi): Predicted velocity at inner elevation, y;
ux: Universal velocity, free of modulation or superposition
B: Amplitude modulation parameter; a: Superposition parameter

aur (yo): Large-scale (low-pass filtered, ur (yo,t) = Gs * u(yo,t)) outer velocity

Marusic et al.: “The simple algebraic form of Eq. 1 [sic] is an ideal basis for a
near-wall model for high-Re large-eddy simulations.”

Mathis et al., 2009: J. Fluid Mech.: amplitude modulation decoupling procedure:

2. 4 (y,t) = Gs ' (y,t), where Gs = Hq(ke — |k|) and ke = 27/8 (one
large-eddy turnover)

3. ﬁls (y7 t) = /H‘l(yv t) - ﬁ‘lL (ya t)

4. Hilbert transform complex analytic, Z(t) = @/(y,t) + iH(t) = A(t)e'*®)

5. Low-pass filtered envelope of small scales, Er (i (y,t)) = Gs * A(t)



Time series: homogeneous roughness
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Top figure: @ (y;,t) (black); @7, (yi,t) (orange); y;/d = 0.004

Middle figure: E(a@/y(y;,t)) (black); y;/6 = 0.004

Bottom figure: Ey (t(yi,t)) (black); @, (yo,t — 7(yo;y:)) (orange); yo/d = 0.1
vo
Yi
07 (y; Yret.) = advective correction [Anderson et al., 2015: J. Turb.]
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Correlation: homogeneous roughness
(@ (v, ) Er (@ (y, 1)) 7

(@2 (y, )3/ (B2 (g (y, 1)))3!

Large-scale signal and envelope of small scales at same elevation

Single-point: R(y;y) =

(@7 (YRet., t + 0T (Y; Yret.)) EL (g (y, t)) T

1/2 1/2
(@2 (yRer. t + 07 (i yrer )y (B3 (W (y, )1/
Large-scale component at fixed outer elevation and envelope of small scales at
varying elevation

Two-point: R(Y; Yret.) =

s 2 4 /A 6

Thick lines: R(y;yret.); Thin lines: R(y;y)

Note: R(y;y) > R(Y; YRet.)

Blue lines: LES with Ny = Ny = N, = 96; Black lines: Ny = Ny = N, = 128

Black squares: smooth wall turbulent channel (Mathis et al., 2009: Physics of
Fluids)

Anderson, 2016: J. Fluid Mech. 789 567—588



Time series: cubic topography: Position x4
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Top figure: @ (y;,t) (black); @7, (yi,t) (orange); y;/d = 0.254

Middle figure: E(a@/y(y;,t)) (black); y;/6 = 0.254

Bottom figure: Ey (ag(y:,t)) (black); @ (yo,t — 67(yo;y:)) (orange); yo/§ = 0.5
Yo
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07 (y; Yret.) = advective correction
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Now: correlate envelope of small scales with large-scale signal



Correlation: cubes
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Thick lines: R(y; yret.); Thin lines: R(y;y)

Note: R(y;y) > R(y; YRret.)
Gray lines: LES with N = 64; blue lines: N = 96; black lines: N = 128



Conclusion:
Under inertia-dominated ABL conditions

...Inertial layer amplitude modulates roughness sublayer

Mixing-layer-like roughness sublayer: positively correlated to inertial layer dynamics

But, location in canopy (secondary canopy flows) greatly influences correlation
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