Sensitivity of WRF Surface Fluxes to PBL and LSM Parameterizations During Persistent Cold Air Pools

Heather A. Holmes¹ and Marcus Trail²

¹Atmospheric Sciences Program, University of Nevada, Reno
²Environmental Protection Division, Georgia Department of Natural Resources

21 June 2016
American Meteorological Society – Boundary Layers and Turbulence Meeting
Salt Lake City, Utah, USA
Cold Air Pool (CAP)
Salt Lake Valley, Utah, USA

Map showing monitoring locations in Northern Utah. Time series of hourly (line) and 24 h (bar) PM concentrations during the month of February 2004 consisting of two cold air pool periods and one mix-out period. Note: Hourly data from the UDAQ Routine Monitoring Network Data.
Wintertime Air Pollution: Cold Air Pool

- Stable atmospheric boundary layers
- Decrease in boundary layer height
- Inhibited mixing
- **Leads to an increase in pollutant concentrations!**
Particulate Matter: Observations vs. Model

Holmes et al., ES&T, 2015
Objectives and Hypotheses

Objectives

• Quantify surface fluxes during wintertime CAPs

• Compare obs to numerical weather prediction (NWP) results

• *Use NWP results in chemical transport model*

Hypotheses

• Modeled will over estimate surface fluxes compared to observations during all time periods

• NWP model will not predict the decrease in atmospheric turbulence during wintertime CAPs
Approach

• Measure turbulence and surface fluxes using a fast response sonic anemometer

• Use NWP model to simulate meteorological conditions

• Sensitivity testing of planetary boundary layer (PBL) and land surface model (LSM) schemes in NWP

• Collect PM$_{2.5}$ mass concentrations form regulatory monitoring networks in northern Utah

• *Model air quality using a chemical transport model to investigate air pollution concentrations*
Numerical Weather Prediction Model

Weather Research & Forecasting (WRF) v3.7.1

- NCEP North American Regional Reanalysis: 32km
- 3 Nested Domains: 12km, 2.4km, 480m
- 30 Vertical Levels: 10 in first 1,000m AGL
- Surface and Upper Air Nudging: OBSGRID
 - Surface: T, u, v, q
 - Vertical, all levels: u, v
 - NCEP ADP surface and upper air weather data
- Land Use Classification: USGS 24-category data
WRF Physics Options

- **Cloud Microphysics**: Lin
- **Longwave Radiation**: Rapid Radiative Transfer Model
- **Shortwave Radiation**: Dudhia
- **Cumulus Parameterizations**: Kain-Fritsch
- **Cloud Fraction Option**: Xu-Randall

D01: 12km x 12km Grids

D03: 480m x 480m Grids

77.3 km

72.5 km

SLC
Planetary Boundary Layer, Surface Physics, Land Surface

1. ACM2, Pleim-Xiu, Pleim-Xiu (with soil nudging) [PLX]
2. YSU, Monin-Obukhov Similarity, Noah [YSU]
3. MYJ, Monin-Obukhov Janjic Eta Similarity, Noah [MYJ]
4. BouLac, Monin-Obukhov Similarity, Noah [BLC]

Combination based on what the PBL model developers intended the configuration to be!
Temperature and Humidity

Temperature (°C)

q (kg kg$^{-1}$)

9-Feb 11-Feb 13-Feb 15-Feb 17-Feb 19-Feb 21-Feb 23-Feb 25-Feb 27-Feb 29-Feb

PLX
YSU
MYJ
BLC
CAP
CAP

Obs
13 February 2004
- Surface based inversion
- Snow on ground
- No clouds
Vertical Profiles: Cloudy CAP

21 February 2004
• Surface mixing + elevated inversion
• No snow on ground
• Layer of stratus clouds
Particulate Matter Accumulation

Two Persistent Cold Air Pools
12-16 February (CAP1), Dry CAP [12.3 µg m$^{-3}$ day$^{-1}$]
20-24 February (CAP2), Cloudy CAP [9.6 µg m$^{-3}$ day$^{-1}$]

Holmes et al., 2015
Sensible and Latent Heat Fluxes

Sensible Heat Flux (W m$^{-2}$)

Latent Heat Flux (W m$^{-2}$)
Sensible Heat Flux
CAP versus non-CAP

OBSERVATIONS

MYJ

-50 0 50 100 150 200
11-15 Mar 11-15 Feb

Hs (W m⁻²)
0 50 100 150 200
-50 0 50 100 150 200
01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00

11-15 Mar 11-15 Feb
Latent Heat Flux
CAP versus non-CAP

OBSERVATIONS

MYJ

H_L (W m^{-2})

01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00

0 10 20 30 40 50 60

11-15 Mar 11-15 Feb

11-15 Mar 11-15 Feb
Summary

• Elevated PM during wintertime in complex terrain is due to both physical and chemical processes in the atmosphere

• WRF captures the mesoscale CAP formation, but does not capture the microscale physics

• CAP surface fluxes are over estimated in simulation results

• Sensible heat flux during non-CAP agrees better with obs

• Simulation results do not capture the cloudy CAP event, likely due to fog issues in the mesoscale model
Future Work

- Plot friction velocity data
- Investigate surface heterogeneity differences
- Sensitivity of PBL/LSM in chemical transport model
- Simulate more recent time periods (e.g., PCAPS)
- Incorporate improved land use data from MODIS

Sensible HF
13 Feb 2004
11:00 MST
PLX

Sensible HF
13 Feb 2004
11:00 MST
MYJ