Coupling Vegetation Responses and Shallow Cumulus through Direct and Diffuse Radiation

> X. Pedruzo Bagazgoitia , H.G. Ouwersloot, M. Sikma, C. M. J. Jacobs, J.Vila-Guerau de Arellano

> > xabier.pedruzobagazgoitia@wur.nl

Increased carbon absorption in cloudy days

Adapted from Freedman et al. (2001)

> Higher CO₂ absorption on days with shallow cumulus or reduced transmittance

 Does this affect evapotranspiration?

Global relevance of Shallow Cumulus

van Stratum et al. (2013)

Global relevance of Shallow Cumulus

Is **diffuse** radiation influencing **CO₂ absorption** and **evapotranspiration**?

What is the impact at the **BL**? and for low **clouds**?

van Stratum et al. (2013)

A bi-directional interaction

Direct & Diffuse

1. Impact of clouds at vegetated surface

Direct & Diffuse

Photo: Bob Small Photography

A bi-directional interaction

Direct & Diffuse

1. Impact of clouds at vegetated surface

2. Impact of vegetated surface on BL and clouds

Direct & Diffuse

Photo: Bob Small Photography

Methods and set up

- Dutch Atmospheric Large Eddy Simulation (DALES)
- Domain: 24km x 24km x 5.4km
- Gridbox size: 50m x 50m x 12m
- Experiment time: 7:00 -17:00 UTC
- LAI=2
- Clear atmosphere
- No wind, CBL
- Typical summer day in The Netherlands:
 - Max cloud cover ≈ 0.2
 - SH_{max} ≈ 155 W/m2
 - LE_{max} ≈ 140 W/m2
 - BL height ≈ 2000 m

Direct/diffuse in clouds

Direct/diffuse in clouds

Direct/diffuse in canopy

Two leaf A-gs :

- Plant physiological model
- Similar to ECMWF
- Sunlit and shaded leaves
- Direct/diffuse radiation at 3 levels
- T_eff for all canopy

Conditional averaging criteria

Because of localized effects:

Conditional averaging criteria

Conditional averaging criteria

Results

Direct & Diffuse

1. Impact of clouds at vegetated surface

2. Impact of vegetated surface on BL and clouds

Direct & Diffuse

Photo: Bob Small Photography

Two thickness-dependent regimes

Disruption of SEB:

Under optimal cloud thickness, An and LE are larger than under clear sky

Two thickness-dependent regimes

Disruption of SEB:

Under optimal cloud thickness, An and LE are larger than under clear sky

Results

Direct & Diffuse

. Impact of clouds at vegetated surface

2. Impact of vegetated surface on BL and clouds

Direct & Diffuse

Photo: Bob Small Photography

Domain averages: Similar surface fluxes and BL

Domain averages: Similar surface fluxes and BL

Conditional average on clouds

Average profiles at 14:00-14:20 UTC

• Cloud core:
$$q_1 > 0$$
, $\theta_v > \theta_{v avg}$

Conditional average on clouds

Average profiles at 14:00-14:20 UTC

Conditional average on clouds

Average profiles at 14:00-14:20 UTC

1. Diffuse radiation plays a critical role on enhancing photosynthesis and LE

 Diffuse radiation plays a critical role on enhancing photosynthesis and LE

2. Two regimes for An and LE for thick/thin clouds: optimal cloud thickness for vegetation

 Diffuse radiation plays a critical role on enhancing photosynthesis and LE

3. Character of light does not affect cloud and BL dynamics significantly (only **local** effects)

2. Two regimes for An and LE for thick/thin clouds: optimal cloud thickness for vegetation

 Diffuse radiation plays a critical role on enhancing photosynthesis and LE

WAGENINGEN UR

3. Character of light does not affect cloud and BL dynamics significantly (only **local** effects)

2. Two regimes for An and LE for thick/thin clouds: optimal cloud thickness for vegetation

xabier.pedruzobagazgoitia@wur.nl

BACK-up slides

Day average

Background diffuse

Background diffuse

DIR

15min plant response lag

In-canopy scheme

In-canopy scheme

2 types of leaves:

Sunlit: Receive direct and diffuse light

Shaded: Receive diffuse light only

Canopy radiative transfer: Validation

Baldocchi et al. (1985)

Conclusions

Challenge in the local

- SCu are rooted in the surface
- Shading changes surface fluxes

Canopy sensitive to direct/diffuse