

Behavior of Stable Surface Layer in the NCEP Global Forecast System

Weizhong Zheng^{1,2} and Michael Ek¹

¹NOAA/NCEP/Environmental Modeling Center(EMC), USA ²IMSG@NOAA/NCEP/EMC, USA

Email: Weizhong.Zheng@noaa.gov

Acknowledges: Helin Wei, Jesse Meng, Jongil Han, Ruiyu Sun, Fanglin Yang, Geoffrey Manikin, Glenn White, Mark Iredell and Ken Mitchell

22nd Symposium on Boundary Layers and Turbulence, Salt Lake City, UT, 20-24 June, 2016

Motivations:

• What is the problem about GFS surface temperature forecast?

One of <u>Top 10</u> problems in the GFS
NWS Field Office, NCEP/EMC Model Evaluation Group (MEG)

• What causes this kind of problem?

- Understanding of stable boundary layer (SBL) processes

• How to solve the problem? – An approach to fix the problem

Ops GFS: T2m Forecast Verification Statistics for Jan 2016

Comparison of T_{2m} (F): NAM, GFS and Obs, 00UTC, 2015-02-17

GFS/GFSX T2m @ MRB Matinsburg RGNL, WV

00Z 01/24/2016 Cycle

T2m @ KMRB

Ops GFS or GFSX: Rapidly cooling up to 15 °C during 3hr; About 13 degrees of cold bias at 00Z, 25 Jan. GFSX: Became current operational version on May 11, 2016.

Schematic view of land-atmosphere stable boundary layer

Others: pressure force, mesoscale motions, gravity waves, etc.

Night-time surface energy budget (LHF is small so neglected):

(A) Under turbulence: $H+R+G_0 \sim Q_{net} ==> quasi-steady state$ (B) Under cessation of turbulence: $R+G_0 \sim Q_{net} + (others) ===> new state$

The system may reach different equilibrium states !

Monin-Obukov Similarity Theory in GFS (SBL)

The flux-profile has no limitation of a finite critical bulk Richardson number throughout a continuous range of the stable regime.

Negative feedback / positive feedback in SBL

Bifurcation diagram: Turbulence vs cooling rates. *Linear stability analysis: Stable/unstable equilibrium states*

 $Z/L < z/L|_M = ln(z/z_0)/[2*\alpha^*(1-z_0/z)]$ Here z0 is the momentum roughness length, and $\alpha = 5$.

GFS Test: T2m 00Z, 2016-01-24 Cycle

GFS Test: Increase T_{2m} and reduce cold bias

T2m @ MRB Matinsburg RGNL, WV

CTL: Rapidly cooling more than 15 °C during 3hr; EXP: Substantially improved

GFS Test: T1, T2m and Tskin @ MRB

T1: Temperature at the lowest model level (Blue); T2m: Red; Tskin: Black

<u>CTL:</u> Large difference between T1 and T2m (or Tskin) during a period of nighttime on 1/25. <u>EXP:</u> Substantially improved not only T2m, but also Tskin and T1.

GFS Test: Surface Fluxes and Ustar @ MRB

GFS: CTL

GFS: Test

Cessation of turbulence: SHF, Ustar $\rightarrow 0$

SHF: Sensible heat flux; Rn: Net downward radiation; LHF: Latent heat flux; GFLUX: Soil heat flux;

Ustar: Friction velocity

Summary/Discussion

• The GFS T2m excessive cold bias is closely related to the positive/negative feedback between the land and the atmosphere under stable conditions.

• The modifications were proposed to fix the T2m cold bias, which prevented the coupling system from decoupling.

• The case study for snow-free or snow pack indicates the modifications can remove the large cold biases of T2m and Tskin, and temperature at the first model level was also improved.

• We plan to include these modifications in next upgrade operational GFS model in 2017.

• In the future, new land data sets (e.g. veg/soil types, new GVF, albedo, etc.) will be updated in the model and expect to further reduction of T2m bias.

Thank You !

Any questions/comments?