Behavior of Stable Surface Layer in the NCEP Global Forecast System

Weizhong Zheng ${ }^{1,2}$ and Michael Ek ${ }^{1}$
${ }^{1}$ NOAA/ NCEP/ Environmental Modeling Center(EMC), USA ${ }^{2}$ I MSG@NOAA/ NCEP/ EMC, USA

Email: Weizhong.Zheng@noaa.gov

Acknowledges: Helin Wei, Jesse Meng,J ongil Han, Ruiyu Sun, Fanglin Yang, Geoffrey Manikin, Glenn White, Mark I redell and Ken Mitchell
$22^{\text {nd }}$ Symposium on Boundary Layers and Turbulence, Salt Lake City, UT, 20-24 J une, 2016

Motivations:

- What is the problem about GFS surface temperature forecast?
- One of Top 10 problems in the GFS

NWS Field Office, NCEP/EMC Model Evaluation Group (MEG)

- What causes this kind of problem?
- Understanding of stable boundary layer (SBL) processes
- How to solve the problem?
- An approach to fix the problem

Ops GFS: T2m Forecast Verification Statistics for Jan 2016

Comparison of $\mathrm{T}_{2 \mathrm{~m}}(\mathrm{~F})$: NAM, GFS and Obs, 00UTC, 2015-02-17

Courtesy Geoffrey Manikin, MEG- 02/19/15 4

GFS/GFSX T2m @ MRB Matinsburg RGNL, WV

00Z 01/24/2016 Cycle
T2m @ KMRB

Ops GFS or GFSX: Rapidly cooling up to $15{ }^{\circ} \mathrm{C}$ during 3hr; About 13 degrees of cold bias at 00Z, 25 Jan.
GFSX: Became current operational version on May 11, 2016.

Schematic view of land-atmosphere stable boundary layer

Others: pressure force, mesoscale motions, gravity waves, etc.
Night-time surface energy budget (LHF is small so neglected):
(A) Under turbulence: $\quad \mathbf{H}+\mathbf{R}+\mathbf{G}_{0} \sim \mathbf{Q}_{\text {net }} \quad===>$ quasi-steady state
(B) Under cessation of turbulence: $\mathbf{R}+\mathbf{G}_{0} \sim \mathbf{Q}_{\text {net }}+$ (others) $===>$ new state

The system may reach different equilibrium states!

Monin-Obukov Similarity Theory in GFS (SBL)

$$
\begin{aligned}
& C_{M}=k^{2} / F_{M}^{2} \\
& C_{H}=k^{2} / F_{M} F_{H} \\
& \varphi_{M}=\varphi_{H}=\frac{1}{2}(1+\sqrt{1+4 \alpha \bar{\xi}}) . \quad \quad \xi=z / L \quad L=\frac{\theta}{k g} \frac{u_{*}^{2}}{\theta *} \\
& F_{M, H}=\int_{z_{0}}^{z} \frac{d z^{\prime}}{z^{\prime}} \varphi_{M, H}\left(z^{\prime} / L\right) \\
& F_{M, H}=\ln \frac{Z}{z_{0}}-\left[\sqrt{1+4 \alpha \xi_{0}}-\sqrt{1+4 \alpha \xi}+\ln \frac{\sqrt{1+4 \alpha \xi}+1}{\sqrt{1+4 \alpha \xi_{0}}-1}\right]
\end{aligned}
$$

The flux-profile has no limitation of a finite critical bulk Richardson number throughout a continuous range of the stable regime.

Negative feedback / positive feedback in SBL

Van de Wiel et al.
turning point

Bifurcation diagram: Turbulence vs cooling rates.
Linear stability analysis: Stable/unstable equilibrium states
$\mathrm{z} / \mathrm{L}<\mathrm{z} /\left.\mathrm{L}\right|_{M}=\ln \left(\mathrm{z} / \mathbf{z}_{0}\right) /\left[2 * \alpha^{*}\left(1-\mathrm{z}_{0} \mathrm{z}\right)\right]$
Here z0 is the momentum roughness length, and $\alpha=5$.

GFS Test: T2m

GFS: EXP4-CTL: T2m (C)
$00 Z 25$ Jan 2016

GFS Test: Increase $T_{2 m}$ and reduce cold bias

00Z, 2016-01-24 Cycle

T2m@ MRB Matinsburg RGNL, WV

CTL: Rapidly cooling more than $15{ }^{\circ} \mathrm{C}$ during 3hr; EXP: Substantially improved

GFS Test: T1, T2m and Tskin @ MRB

T1: Temperature at the lowest model level (Blue); T2m: Red; Tskin: Black

CTL: Large difference between $T 1$ and T2m (or Tskin) during a period of nighttime on 1/25. EXP: Substantially improved not only T2m, but also Tskin and T1.

GFS Test: Surface Fluxes and Ustar @ MRB

GFS: CTL
GFS: Test

Under weak turbulence
Cessation of turbulence: SHF, Ustar $\rightarrow 0$
SHF: Sensible heat flux; Rn: Net downward radiation;
LHF: Latent heat flux; GFLUX: Soil heat flux; Ustar: Friction velocity

GFS Test: T2m

00Z, 2012-10-05 Cycle

GFS: EXP4-CTL: T2m (C)
00205 Oct 2012

Summary/Discussion

- The GFS T2m excessive cold bias is closely related to the positive/negative feedback between the land and the atmosphere under stable conditions.
-The modifications were proposed to fix the T2m cold bias, which prevented the coupling system from decoupling.
- The case study for snow-free or snow pack indicates the modifications can remove the large cold biases of T 2 m and Tskin, and temperature at the first model level was also improved.
- We plan to include these modifications in next upgrade operational GFS model in 2017.
- In the future, new land data sets (e.g. veg/soil types, new GVF, albedo, etc.) will be updated in the model and expect to further reduction of T2m bias.

Thank You !

Any questions/comments?

