

Long-Term Vertical Velocity Statistics Derived from Doppler Lidar in the Continental Convective Boundary Layer

LARRY BERG¹, ROB NEWSOM¹, DAVE TURNER², RAJ RAI¹

¹Pacific Northwest National Laboratory ²NOAA National Severe Stoms Laboratory

Contact: larry.berg@pnnl.gov

June 16, 2016

Motivation

- Distributions of vertical velocity (w) are needed to understand both PBL turbulence and boundary-layer clouds
- Most studies of w statistics are derived from short-term aircraft observations or tower based studies
 - BAO (300 m)
 - Cabaw (213 m)
- Long-term measurements of w statistics are lacking, but are needed for evaluating model results and developing new parameterizations
 - ARM LASSO (LES ARM Symbiotic Simulation and Observation) project
- Data collected by Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility provide a unique opportunity to address this need.

Outline

- Data description
- Composites of w stats
- Sorting the results
- Conclusions

ARM Doppler Lidars and Analysis Criteria

- Halo-Photonics DL Deployed at ARM fixed sites and AMF
 - Near-IR (1.5 μm)
 - Range is typically less than 2 km for clear-air retrievals
- Value Added Product (VAP) has been developed that includes wind profiles and key statistics: variance, skewness, and kurtosis
- Utilize ARM meteorological and flux data, wind profiles from 915 MHz radar wind profilers
- Data selection criteria
 - Require SNR to be ≥ 0.03 (more stringent criteria used for higher order stats)
 - Define z_i using a threshold of variance (0.04—based on Tucker et al. 2009)
 - $z_i > 0$, w_{*} > 0 (implies positive surface heat flux)
 - Cloud Fraction < 0.001</p>

Representative Case: 18 July 2015

ECOR=Eddy Covariance System

June 16, 2016

Composite Statistics

Sensitivity of Statistics to Parameters

- The w statistics can be sorted by many different ways—think of factors that could influence the PBL turbulence
 - Time of day
 - Wind direction
 - Season
 - Surface shear stress/friction velocity (u*)
 - Wind Shear at PBL top
 - Static stability
- Use Kolomogorov-Smirnov test to determine if differences are statistically significant
 - Look to see if values could be from the same parent distribution

Change in Variance Profile with Time

- All values of σ_w² have been normalized by w_∗
- Values tend to be smaller than short-term results presented by Lenschow et al. (2012):

$$\frac{\sigma_w^2}{w_*^2} = 1.8 \left(\frac{z}{z_i}\right)^{2/3} \left(1 - 0.8 \frac{z}{z_i}\right)^2 \quad \stackrel{N}{\searrow}$$

- Normalization works best in late-morning and afternoon
 - PBL approximately steady state

Sensitivity of σ_w^2/w_*^2 to Wind Direction

Differences in land use and surface roughness associated with wind direction could lead to differences in velocity statistics

Limit analysis to periods with southerly winds

Dependence on Season

 σ_w^2/w_*^2 changes with season, differences in surface heterogeneity? Skewness larger in PLB top during warm seasons

Dependence on u*

 z/z_{i}

- Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965
- Values of u_{*} from surface flux measurements were sorted to determine critical values

Dependence on Stability

Stability defined using –z_i/L

Values greater than 30 are unstable, less than 30 moderately unstable

June 16,

z/z

Dependence on Wind Shear Across the Boundary-Layer Top

Wind shear determined from radar wind profiler
Based on wind speed differences between z/z_i of 1.1 and 0.9

June 16, 2 Cases with large amounts of shear are less skewed over much of the BL

Conclusions

- Data from ARM Doppler lidars provide a unique opportunity to look at long-term vertical velocity statistics
- Scaling with w* works best for cases when BL is quasi-stationary
- There as systematic differences in the \(\sigma_w^2/w_*^2\), skewness, and kurtosis associated with differences is:
 - Season

Variance largest in spring; Skewness larger in warmer seasons

Less intense mixing at surface leads to larger

variance

Less intense mixing at boundary-layer

top leads to larger skewness

- Surface stress: smaller values of u* lead to large values of σ_w^2/w_*^2
- Stability: Moderately unstable conditions lead to larger values of σ_w²/w_{*}² and kurtosis
- Wind Shear across the BL top: small values of shear lead to larger values of skewness

Future efforts will extend work to stable conditions

Acknowledgments: This work was supported by the DOE Atmospheric System Research (ASR) Program and Atmospheric Radiation Climate Research Facility 3-Line (or more) Header for New PNNL PowerPoint Template / Full-Color Background (if supported by content)

Pacific Northwest

Proudly Operated by **Baffelle** Since 1965