Testing the HBG model under strong stabilities of GABLS4

A SCM inter-comparison study using CCAM

Jing Huang¹ | Marcus Thatcher¹ | Elie Bou-Zeid² 24 June 2016, Salt Lake City The 22nd Symposium on Boundary Layers and Turbulence, AMS

OCEANS & ATMOSPHERE www.csiro.au

2

civiland environmental engineering

Outline

- The Huang-Bou-Zeid-Golaz (HBG) model (Huang et al., JAS, 2013)
 - GABLS
 - Local Richardson number similarity
 - The HBG model
- GABLS4 inter-comparison
 - GABLS4
 - Single column model (CCAM) and available schemes for SABL
 - Land surface model (CABLE)
- Results
 - Surface temperature
 - Surface sensible heat flux
 - Temperature at 42 m
 - Wind speed profile
- Conclusions

GABLS and LES runs

- Initial conditions
 - Geostrophic wind: Ug=8.0 m/s, Vg=0.0 m/s
 - Potential temperature: 265K up to 100m, then it increases at a rate of 0.01 K/m
- Boundary conditions
 - MOST wall model at surface and no stress and no penetration at the simulation domain top
 - Prescribed surface temperature with a constant decreasing rate of 0.25 K/h
 - Roughness length $z_{0m} = z_{0h} = 0.1 m$
- Higher stabilities
 - Increasing the surface cooling rate from 0.25K/h
 - We also test much higher stabilities than GABLS, going up to 2.5K/h (Case A-F)
- LES setup
 - Simulation domain
 - 162X162X160 grid points
 - 800X800X400 m³
 - SGS model: Lagrangian scale-dependent dynamic (Bou-Zeid et al. Phys. Fluids 2005)
 - Courant-Friedrichs-Lewy (CFL) number is around 0.1
 - Total physical run time: 10 hours
 - Statistics were obtained with the results of the last three hour

Case	Cooling rate (K h^{-1})	<i>h</i> (m)	u_* (m s ⁻¹)	$\theta_{*}\left(\mathrm{K}\right)$	$L_{MO}(z=0)$ (m)	L_{OZ} (m)
А	0.25	158	0.247	0.0392	104	14.4
В	0.5	128	0.226	0.0653	51.9	8.15
С	1	106	0.208	0.114	24.8	4.31
D	1.5	94.5	0.198	0.158	15.9	2.88
Е	2	86.9	0.190	0.199	11.5	2.11
F	2.5	81.5	0.184	0.237	8.93	1.65

 TABLE 1. Mean boundary layer characteristics for stable ABL
 simulations with steady surface cooling rates.

[Huang and Bou-Zeid, JAS, 2013]

- With increasing stability:
 - Stronger wind speed peak, and vertical gradient of mean temperature
 - Lower low-level jet, and shallower boundary-layer
 - Decrease in surface momentum and increase in temperature flux

Local scaling theory

- Dimensionless combinations of variables should be functions of z/Λ (Nieuwstadt 1984). However...
- Eddy diffusivities are *z*-less under strongly stable conditions.

$$\phi_{K_m} = K_m \Lambda^{-1} \tau^{-1/2}$$

$$\phi_{K_h} = K_h \Lambda^{-1} \tau^{-1/2}$$

$$\Lambda = -\tau^{3/2} \Theta(\kappa g q)^{-1}$$

[Huang and Bou-Zeid, JAS, 2013]

Local Richardson number similarity

The new model (HBG)

[Huang et al., JAS, 2013]

GABLS4 SCM/LSM inter-comparison

- Based on a real case on 11 Dec. 2009 under strong stability (Ri>1) at DomeC Antarctica
 - Stage 1b Coupling of SCM with LSM, prescribed initial surface and soil conditions and atmospheric forcing
 - Stage 2 Same as Stage 1b BUT the surface temperature is given
 - Stage 3 idealized case: no radiation, no moisture, no prescribed atmospheric forcing, only prescribed surface temperature and constant geostrophic wind speed

From O. Traullé (left) and E. Brun (right) http://www.cnrm-game-meteo.fr/aladin/meshtml/GABLS4/GABLS4.html

Single column model - CCAM

- CCAM: Cubic-Conformal Atmospheric Model developed by CSIRO
 - Support a variable-resolution global grid using Schmidt transformation
 - Three SABL schemes:
 - The HBG model

$$\frac{1}{l_m} = \frac{1}{\kappa z} + \frac{1}{l_\infty} + \frac{R l_g}{\lambda}$$
$$l_\infty = 9 \text{ m}, \lambda = 0.45 \text{ m}$$

The Louis (1979) model (a long-tail type)

$$f_m(Ri_g) = (1 + 4.7Ri_g)^{-2}$$
$$l_{\infty} = 100 m$$

- A standard prognostic k-eps model
- A modified Louis (1979) model

$$f_m(Ri_g) = (1 + 4.7Ri_g)^{-2}$$
$$l_{\infty} = 9 m$$

- Land surface model CABLE: Community Atmosphere Biosphere Land Exchange model developed by CSIRO and BOM
 - Biophysical component
 - Surface radiation transfer
 - Canopy turbulence

- Two-leaf turbulence
- Six soil and three snow layers
- Biogeochemical component
- Land use and land use change

Surface temperature

HPBL

- K-eps scheme collapses during night
 - Low surface temperature
 - Shallow SABL

- Louis scheme
 - Overestimate surface temperature
 - Give spurious deep SABL
- HBG and Louis 9m perform similarly
 - Slightly shallower SABL for HBG

Surface sensible heat flux

- Observation flux is actually at z = 7m k-eps produces too little flux
- Louis scheme leads to more flux during night
- HBG and Louis 9m still perform similarly

Temperature at 42 m

- Louis scheme overestimates temperature at 42m
- K-eps scheme
 - Best result for Stage 1&2
 - Constant temperature during night at Stage 3 as a result of a shallow SABL and no prescribed atmospheric forcing
- HBG and Louis 9m still perform similarly

Wind speed profile at 18T

- Louis scheme leads to fast wind speed increase at surface
- Relative to HBG, Louis 9m scheme causes a longer mixing length under strong stabilities
 - HBG produces a low-level jet while Louis 9m does not
 - Still needs investigation on the elevated low-level jet and wind speed near surface
- K-eps gives right LLJ but wrong shear at the top of SABL

z = 100m

Conclusions

- The HBG scheme has been tested under strong stabilities (Ri>1) using CSIRO-developed SCM (CCAM) and LSM (CABLE).
- The HBG scheme gives
 - The best overall result
 - Elevated LLJ
- The original Louis (1979) scheme leads to
 - Overestimated surface temperature
 - Spurious deep SABL
- The k-eps scheme could collapse under strong stabilities
 - Underestimated surface temperature
 - Too shallow SABL
 - Right LLJ
- Louis 9m
 - Similar to HBG
 - No LLJ simulated

Thank you

CSIRO Oceans and Atmosphere Dr Jing Huang Research Scientist

- t +61 2 6281 8253
- e Jing.R.Huang@csiro.au
- w www.weru.csiro.au

OCEANS AND ATMOSPHERE www.csiro.au

