

Large-Eddy Simulation of the Wake Flow Inside and Downwind of a Large Finite-Size Wind Farm (a Ling Mu, Ferrance Force-Luce

Introduction

Large Finite-Size Wind Farms

• Large wind farms are built closer and closer to each other

e.g. Horns Rev 2 is placed only 14 km from Horns Rev 1 in the North Sea

• Offshore ABLs are often considered as conventionally neutral boundary layers (CNBL)

Source: http://www.ens.dk/sites/ens.dk/files/dokumenter/publikationer/downloads/new_offshore_wind_tenders_in_denmark_final.pdf

Objectives

To study:

- the adjustment of the ABL above and behind a large wind farm
- · the structure of the wake flow inside and behind the wind farm
- · the validity and limitations of the infinite wind farm approximation

METHODOLOGY - LARGE-EDDY SIMULATIONS (LES)

In-house WIRE-LES code solving filtered governing equations [Abkar & Porté-Agel (2013)]

$$\begin{array}{l} \mbox{Filtered Navier-}\\ \mbox{Stokes Equations} \end{array} \frac{\partial \tilde{u}_i}{\partial t} + \tilde{u}_j \left(\frac{\partial \tilde{u}_i}{\partial x_j} - \frac{\partial \tilde{u}_j}{\partial x_i} \right) = -\frac{\partial \tilde{p}^*}{\partial x_i} - \frac{\partial \tau^d_{ij}}{\partial x_j} + \delta_{i3}g \frac{\tilde{\theta} - \langle \tilde{\theta} \rangle}{\theta_0} + f_c \epsilon_{ij3} \tilde{u}_j + F_i \\ \\ \mbox{Filtered}\\ \mbox{Continuity}\\ \mbox{Equation} \end{array} \frac{\partial \tilde{u}_i}{\partial x_i} = 0 \\ \end{array} \\ \begin{array}{l} \mbox{Filtered Scalar}\\ \mbox{Transport}\\ \mbox{Equation} \end{array} \frac{\partial \tilde{\theta}}{\partial t} + \tilde{u}_j \frac{\partial \tilde{\theta}}{\partial x_j} = -\frac{\partial q_j}{\partial x_j} \end{array}$$

Scale-dependent Lagrangian dynamic eddy-viscosity model to parameterize subgrid-scale (SGS) stress and heat flux [Stoll & Porté-Agel (2006)]

$$\begin{array}{l} \text{SGS} \\ \text{Stress} \end{array} \tau_{ij}^d = \tau_{ij} - \frac{1}{3} \tau_{kk} \delta_{ij} = -2 \tilde{\Delta}^2 C_s^2 |\tilde{S}| \tilde{S}_{ij} \end{array} \qquad \qquad \\ \begin{array}{l} \text{SGS} \\ \text{Flux} \end{array} q_j = - \tilde{\Delta}^2 C_s^2 P r_{sgs}^{-1} |\tilde{S}| \frac{\partial \theta}{\partial x_j} \end{array}$$

Actuator-disk model with rotation for wind-turbine parameterization [Wu & Porté-Agel (2011)]:

$$\mathbf{f}_{disk} = \frac{d\mathbf{F}}{dA} = \frac{1}{2}\rho V_{rel}^2 \frac{Bc}{2\pi r} (C_L \mathbf{e_L} + C_D \mathbf{e_D})$$

Model of wind turbines simulated: Vestas V80-2MW, with a 80 m diameter

Methodology

METHODOLOGY - LARGE-EDDY SIMULATIONS (LES)

Large Finite-Size Wind Farm Setup

FÉDÉRALE DE LAUSANNE

Inflow Conditions (from Precursor Simulation)

4

Boundary Layer Growth

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Boundary Layer Growth

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne ABL & IBL

Gravity Wave Generation

Flow Statistics of the Wind Farm and its Wake

FÉDÉRALE DE LAUSANNE

Flow Statistics

Boundary Layer Growth Estimation

Taylor's Hypothesis: connect the scale of space with time using wind advection speed at the hub height of wind turbines

Boundary Layer Growth Forecast

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Conclusions and Future Work

• Boundary Layer Growth:

The IBL first grows following Elliot's 0.8 Power Law. When it reaches the height of the CNBL, the CNBL acts as a lid and damps the IBL growth rate. After a transient period, the CNBL and the IBL grow together at a steady rate that is lower than the initial IBL growth rate

- Large finite-size wind farm's CNBL height is lower than the theoretical infinite wind farm's CNBL height
- Gravity waves are induced by the large finitesize wind farm
- At 10 km downstream of the large finite-size wind farm:
- ~2.4% velocity deficit comparing to the inflow
- ~7% wind power loss

Conclusion

Future Work

- Investigate large finite-size wind farms that are longer than 15 km
- Develop an one-dimensional analytical model to predict velocity profiles inside the large finite-size wind farm and the wake of the wind farm

Questionsp

Questions

The End

Introduction	Large Finite-Size Wind FarmsObjectives
Methodology	 Large-Eddy Simulations Inflow Conditions and Setup
Boundary Layer Growth	 Atmospheric and Internal Boundary Layers (ABL & IBL) Gravity Wave Generation
Flow Statistics	Inside the Large Finite-Size Wind FarmIn the Wake of the Wind Farm
Boundary Layer Growth Forecast	
Conclusions	

References

- 1. Abkar, Mahdi, and Fernando Porté-Agel. "The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms." Energies 6.5 (2013): 2338-2361.
- 2. Elliott, William P. "The growth of the atmospheric internal boundary layer." *Eos, Transactions American Geophysical Union* 39.6 (1958): 1048-1054.
- 3. Zilitinkevich, S. S., V. L. Perov, and J. C. King. "Near-surface turbulent fluxes in stable stratification: Calculation techniques for use in general-circulation models." *Quarterly Journal of the Royal Meteorological Society* 128.583 (2002): 1571-1587.

